
- •1.Причины возникновения и последствия электромеханических переходных процессов. Простейшее определение устойчивости.
- •2.Основные понятия и определения: электроэнергетическая система и ее элементы; режимы системы; требования к режимам.
- •3.Классификация переходных процессов. Основные допущения, принимаемые при анализе и расчетах электромеханических переходных процессов.
- •4. Классификация режимов. Требования к режимам. Общие понятия о параллельной работе электрических машин.
- •5.Математическое моделирование переходных процессов. Схемы замещения и структурные схемы.
- •6.Математические модели линий электропередачи, трансформаторов, нагрузок, регулирующих устройств в расчетах пп.
- •7.Моделирование синхронных машин в расчетах устойчивости
- •8.Применение собственных и взаимных проводимостей и сопротивлений в расчетах устойчивости. Определение токов и мощностей.
- •9.Простейшая математическая модель электрической системы. Уравнение движения. Механический момент. Электромагнитный момент.
- •10. Угловая характеристика мощности простейшей схемы. Векторная диаграмма и основные соотношения между параметрами режима и параметрами системы.
- •Синхронизирующая мощность. Анализ устойчивой и неустойчивой частей угловой характеристики мощности.
- •Влияние параметров системы и параметров режима на характеристику мощности.
- •Характеристика мощности при сложной связи генератора с приёмником
- •14.Системы возбуждения синхронных машин и автоматические регуляторы.
- •15.Характеристики мощности генераторов с арв. Упрощенное представление генераторов в расчетах устойчивости.
- •16. Характеристика мощности явнополюсных синхронных машин.
- •17. Расчет статической устойчивости простейшей системы. Коэффициент запаса . Практические критерии устойчивости.
- •18. Метод малых колебаний при анализе статической устойчивости.
- •19. Виды нарушения устойчивости нерегулируемой системы. Сползание режима, самораскачивание и самовозбуждения.
- •20. Понятие динамической устойчивости системы. Основные допущения при упрощенном анализе.
- •21. Динамическая устойчивость станции, работающей на шины бесконечной мощности. Правило площадей и вытекающие из него критерии устойчивости.
- •Анализ динамической устойчивости при отключении короткого замыкания. Предельный угол отключения кз. Предельное время отключения.
- •Методика расчета динамической устойчивости сложных электрических систем. Метод численного интегрирования.
- •Результирующая устойчивость. Причины возникновения асинхронного хода. Особенности исследования результирующей устойчивости.
- •Общая характеристика переходных процессов в узлах нагрузки. Большие и малые возмущения в системах электроснабжения.
- •Поведение двигателей при снижении напряжения. Лавина напряжения в узлах нагрузки.
- •27. Причины нарушения работы потребителей при кратковременных нарушениях электроснабжения. Причины нарушения в системе и у потребителей.
- •28.Влияние на устойчивость асинхронной нагрузки включения конденсаторных батарей.
- •29. Влияние загрузки и внешнего сопротивления на устойчивость ад.
- •30. Повышение устойчивости. Противоаварийные мероприятия в энергосистеме.
- •31. Повышение устойчивости. Противоаварийные мероприятия на промышленных предприятиях.
- •32 Статическая устойчивость узлов комплексной нагрузки. Критерии устойчивости комплексной нагрузки.
- •33 Большие возмущения в узлах системы электроснабжения. Уравнение движения агрегата “двигатель-механизм”
- •34 Статическая устойчивость сд. Угловая характеристика мощности сд. Критерии устойчивости сд.
- •35. Изменение частоты системы и влияние на устойчивость асинхронной нагрузки
- •36.Представление нагрузки в расчетах устойчивости. Статические и динамические характеристики нагрузки.
- •37.Основные расчетные соотношения асинхронных двигателей. Схемы замещения и механическая характеристика ад.
- •38. Пуск эд. Общая характеристика условий пуска. Схемы пуска.
- •39. Ток и напряжение при прямом пуске двигателя от сети. Время пуска. Особенности пуска ад и сд.
- •40. Реакторный пуск электродвигателей. Выбор реактора.
- •41. Уравнение движения при пуске двигателя и его интегрирование
- •42. Ток включения при самозапуске. Напряжение при включении. Допустимость несинхронного включения.
- •43. Разгон электродвигателей при самозапуске. Ресинхронизация синхронных двигателей.
- •44. Определение мощности неотключаемых двигателей по условию самозапуска.
- •Где mд.Дин и mд.Макс – минимальный и максимальный моменты вращения двигателя.
- •45. Выбег двигателя при самозапуске. Определение скорости и эдс. Гашение поля двигателя.
- •46. Самозапуск электродвигателей. Общая характеристика самозапуска. Апв и переключение питания.
- •47. Влияние самозапуска на систему электроснабжения. Требования к схемам питания. Влияние на рза.
- •49. Критерий Рауса – Гурвица
19. Виды нарушения устойчивости нерегулируемой системы. Сползание режима, самораскачивание и самовозбуждения.
Частный случай, когда в системе предполагается отсутствие регулирования возбуждения и не учитывается переходные процессы, представляют интерес для выяснения влияния этих факторов на предел передаваемой мощности. Учтем демпферный момент упрощенно (Рd). В этом случае переходной процесс в системе будет описываться одним нелинейным ДУ второго порядка:
Tj∙P2∙δ+Pd∙Pδ=Pт-Рэ;
Рт=Ро-Рм∙sinδo – мощность турбины.
Рэ=Рм∙sinδ–эл.магн.мощность генератора
Раскладываем Рм∙sinδ в ряд Тейлора по малой величине ∆δ в окрестности δо . После преобразования полученной лианелизацией, по первому приближению диф. уравнения.
Tj∙P2∙∆δ+Pd∙P∆δ+Сi∙∆δ=0.
Решение ∆δ=А1еР1t+А2еР2t ;
Характеристическое уравнение:
Tj∙P2+Pd∙p+Ci=0
имеет два корня Р1,2=±jΨ+α,
где – собственная частота колебаний ротора генератора.
α=-(Рd/2Tj) – определяет затухание. При С<0 оба корня характеристического уравнения-действительны и один из них всегда положительный ; при всяком возмущении в системе будет происходить апериодическое нарастание угла. Угол δо = 90 – является приделом статической устойчивости, границей разделения двух видов движения : колебательное при δо < 90 и апериодическое при δо > 90. При δо > 90 в системе происходит апериодическое нарушение статической устойчивости –это называется сползанием режима(изменение параметров режима). Область, где Сi >0 – сектор, где незатухающие колебания перейдут в затухающие. Условие Сi >0 – отвечает практическому критерию устойчивости dP/dδ=0. Проведенное исследование не является полным – т.к. не рассматривается нарушение устойчивости, имеющее специфическое характер самораскачивания и самовозбуждения. Такие нарушения могут наступать при наличии в сети или заметного активного сопротивления (x/r>0,05), или емкости(-ТdI) в первом случае возникнут установившиеся или нарастающие колебания ; во втором происходит самопроизвольный рост тока и напряжения генераторов, потребляющих емкостную (-Q) реактивную мощность – самовозбуждения может происходить при подключении генератора к ненагруженной (отключенной от системы ) ЛЭП. В действительности нарастание тока будет ограниченно насыщением магнитных цепей генератора и трансформатора. Нарастание тока будет сначала монотонно(синхронное самовозбуждение) и асинхронное самовозбуждение – сопровождаться биением.
20. Понятие динамической устойчивости системы. Основные допущения при упрощенном анализе.
Электрическая система, обеспечивающая своим нормальным функционированием работу промышленности, трансформатора, быта населения, должна работать надежно. Основным условием надежной работы является ее устойчивость – способность системы восстановить свое исходное состояние.
Различают
два вида устойчивости: статическую
устойчивость и динамическую устойчивость,
рассматриваемую при больших (обычно
нелинейных) отклонениях параметров n
часто сопровождающихся изменениями
конфигурации и параметров электрической
системы и значений их параметров.
Различают два вида динамической устойчивости: синхронную устойчивость – сохранение режима при больших колебаниях, но без поворота ротора генератора (180 – 360 градусов);
результирующую устойчивость – восстановление режима после кратковременного нарушения (работа генератора несинхронно), но при восстановлении нормальной синхронной работы после нескольких поворотов ротора. Это восстановление может происходить самостоятельно в силу внутренних свойств системы и под действием специальных устройств системной автоматики.
Для обеспечения устойчивости система должна работать с некоторым запасом, характеризуемым коэффициентом запаса Кз, т.е. при таких параметрах режима которые отклоняются в Кз>1 от критических – тех при которых может произойти нарушение устойчивости. Для определения Кз в данной системе параметры которой известны, и для выбора мероприятий, улучшающих устойчивость, необходим анализ (расчеты) устойчивости с определением критических параметров.