
- •1 .Параллельный регистр на rs-триггерах.
- •2. Параллельный регистр на d-триггерах.
- •3. Разрядная схема параллельного регистра, реализующая запись с двух направлений.
- •4. Сдвигающий регистр.
- •5. Организация межрегистровых связей
- •6. Основные параметры и классификация счетчиков
- •8. Вычитающий счетчик с последовательным переносом на т-триггерах
- •Реверсивный счетчик на т-триггерах.
- •10.Счетчик с параллельным переносом на т-триггерах.
- •11. Структура счетчика с комбинированным переносом.
- •12. Счетчик со сквозным переносом на т-триггерах.
- •13. Двоично-кодированные счетчики на т-триггерах.
- •14. Кольцевой счетчик на т-триггерах.
- •15.Мультиплексор. Таблица истинности. Мат. Описание. Принципиальная схема.
- •16. Схема мультиплексорного дерева
- •17. Демультиплексор. Таблица истинности. Мат. Описание. Принципиальная схема.
- •18.Схема демультиплексорного дерева
- •1 9. Преобразователи кодов.
- •Шифратор. Таблица истинности. Мат. Описание. Принципиальная схема.
- •22.Реализация демультиплексора с использованием дешифратора.
- •23 Реализация мультиплексора с использованием дешифратора.
- •Многоступенчатый дешифратор.
- •25. Полный двоичный дешифратор на базе двух двоично–десятичных де-шифраторов.
- •26. Цифровой компаратор. Таблица истинности. Математическое описание. Принципиальная схема
- •27. Счетчики в коде Грея
- •1. Счетчики в коде «1 из n»
- •3.Распределитель с автоматическим вхождением в рабочий цикл за 1 такт
- •4. Счетчик Джонсона.
- •5.Полиномиальные счетчики.
- •6. Схемы генераторов псевдослучайной последовательности (гпсп).
- •7. Арифметико-логические устройства (алу). Назначение и основные параметры.
- •8. Сумматоры. Алгоритм двоичного сложения.
- •9. Сумматоры. Сложение многоразрядных двоичных кодов.
- •11. Одноразрядный сумматор
- •12. Многоразрядный сумматор параллельного действия.
- •13. Многоразрядный сумматор последовательного действия.
- •14. Сумматор с параллельным переносом.
- •15.Сумматоры с цепным переносом.
- •16.Выполнение операций арифметического умножения.
- •17.Классификация запоминающих устройств.
- •18.Структура озу типа 2d.
- •19.Структура озу типа 3d.
- •20.Структура озу типа 2dm.
- •Запоминающие устройства типа
- •21.Масочные запоминающие устройства.
- •22.Матрица моп- транзисторных элементов зу.
- •23.Запоминающие устройства типа prom.
- •24/25.Запоминающие устройства типа eprom eeprom.
- •26.Статистические озу (sram).
- •27.Динамические озу(dram).
- •Запоминающие элементы
- •Основные сведения. Система параметров. Классификация
- •Параметры зу
- •Параметры зу
24/25.Запоминающие устройства типа eprom eeprom.
В репрограммируемых ЗУ типов EPROM и EEPROM (или E2PROM) возможно стирание старой информации и замена ее новой в результате специального процесса, для проведения которого ЗУ выводится из рабочего режима. Рабочий режим (чтение данных) – процесс, выполняемый с относительно высокой скоростью. Замена же содержимого памяти требует выполнения гораздо более длительных операций.
По способу стирания старой информации различают ЗУ со стиранием ультрафиолетовыми лучами (EPROM или в русской терминологии РПЗУ-УФ, т.е. репрограммируемые ПЗУ с ультрафиолетовым стиранием) и электрическим стиранием (E2PROM или РПЗУ-ЭС).
Запоминающими элементами современных РПЗУ являются транзисторы типов МНОП и ЛИЗМОП (добавление ЛИЗ к обозначению МОП происходит от слов Лавинная Инжекция Заряда). МНОП-транзистор отличается от обычного МОП-транзистора двухслойным подзатворным диэлектриком. На поверхности кристалла расположен тонкий слой двуокиси кремния SiO2, далее более толстый слой нитрида кремния Si3N4 и затем уже затвор (рис. 9.7 а). На границе диэлектрических слоев возникают центры захвата заряда. Благодаря туннельному эффекту, носители заряда могут проходить через тонкую пленку окисла толщиной не более 5 нм и скапливаться на границе раздела слоев. Этот заряд и является носителем информации, хранимой МНОП-транзистором. Заряд записывают созданием под затвором напряженности электрического поля, достаточной для возникновения туннельного перехода носителей заряда через тонкий слой SiO2. На границе раздела диэлектрических слоев можно создавать заряд любого знака в зависимости от направленности электрического поля в подзатворной области. Наличие заряда влияет на пороговое напряжение транзистора.
а б
Рисунок 9.7 – Структуры транзисторов типов МНОП (а)
и ЛИЗМОП с двойным затвором (б)
Для МНОП-транзистора с п-каналом отрицательный заряд на границе раздела слоев повышает пороговое напряжение (экранирует воздействие положительного напряжения на затворе, отпирающего транзистор). При этом пороговое напряжение возрастает настолько, что рабочие напряжения на затворе транзистора не в состоянии его открыть (создать в нем проводящий канал). Транзистор, в котором заряд отсутствует или имеет другой знак, легко открывается рабочим значением напряжения. Так осуществляется хранение бита в МНОП: одно из состояний трактуется как отображение логической единицы, другое – нуля.
При программировании ЗУ используются относительно высокие напряжения, около 20 В. После снятия высоких напряжений туннельное прохождение носителей заряда через диэлектрик прекращается и заданное транзистору пороговое напряжение остается неизменным. После 104...106 перезаписей МНОП-транзистор перестает устойчиво хранить заряд. РПЗУ на МНОП-транзисторах энергонезависимы и могут хранить информацию месяцами, годами и десятками лет.
Перед новой записью старая информация стирается записью нулей во все запоминающие элементы. Тип ЗУ – РПЗУ-ЭС.
Транзисторы типа ЛИЗМОП всегда имеют так называемый плавающий затвор, который может быть единственным или вторым, дополнительным к обычному (управляющему) затвору. Транзисторы с одним плавающим затвором используются в ЗУ типа РПЗУ-УФ, а транзисторы с двойным затвором пригодны для применения как в РПЗУ-УФ, так и в РПЗУ-ЭС. Рассмотрим более современный тип – ЛИЗМОП-транзистор с двойным затвором (рис. 9.7, б).
Принцип работы ЛИЗМОП с двойным затвором близок к принципу работы МНОП-транзистора – здесь также между управляющим затвором и областью канала помещается область, в которую при программировании можно вводить заряд, влияющий на величину порогового напряжения транзистора Только область введения заряда представляет собою не границу раздела слоев диэлектрика, а окруженную со всех сторон диэлектриком проводящую область (обычно из поликристаллического кремния), в которую, как в ловушку, можно ввести заряд, способный сохраняться в ней в течение очень длительного времени. Эта область и называется плавающим затвором.
При подаче на управляющий затвор, исток и сток импульса положительного напряжения относительно большой амплитуды 20...25 В в обратно смещенных р-n переходах возникает лавинный пробой, область которого насыщается электронами. Часть электронов, имеющих энергию, достаточную для преодоления потенциального барьера диэлектрической области, проникает в плавающий затвор. Снятие высокого программирующего напряжения восстанавливает обычное состояние областей транзистора и запирает электроны в плавающем затворе, где они могут находиться длительное время (в высококачественных приборах многие годы).
В EPROM стирание выполняется с помощью облучения кристалла ультрафиолетовыми лучами, ее русское название РПЗУ-УФ (репрограммируемое ПЗУ с УФ-стиранием). В EEPROM стирание производится электрическими сигналами, ее русское название РПЗУ-ЭС (репрограммируемое ПЗУ с электрическим стиранием). Английские названия расшифровываются как Electrically Programmable ROM и Electrically Erasable Programmable ROM. Программирование PROM и репрограммирование EPROM и EEPROM производятся в обычных лабораторных условиях с помощью либо специальных программаторов, либо специальных режимов без специальных приборов (для EEPROM). Память типа Flash по запоминающему элементу подобна памяти типа EEPROM (или иначе E2PROM), но имеет структурные и технологические особенности, позволяющие выделить ее в отдельный вид. Запись данных и для EPROM и для E2PROM производится электрическими сигналами. В ЗУ с последовательным доступом записываемые данные образуют некоторую очередь. Считывание происходит из очереди слово за словом либо в порядке записи, либо в обратном порядке. Моделью такого ЗУ является последовательная цепочка запоминающих элементов, в которой данные передаются между соседними элементами.