Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_po_tmogi.doc
Скачиваний:
1
Добавлен:
17.04.2019
Размер:
2.24 Mб
Скачать

3. Составим уравнение регрессии  на d:

,

;

приведём его к виду:

;

.

Получаем окончательно:

.

Затем по уравнению  строим на графике рис. 5.1 прямую линию.

Достоинство уравнения регрессии  состоит в том, что оно позволит по заданным значениям переменной D (в км) предвычислять ожидаемые в среднем значения переменной  (в см).

25) Основные задачи теории ошибок

ЗАДАЧИ ТЕОРИИ ОШИБОК

В теории ошибок на основе теории вероятностей с использованием методов математической статистики решают следующие задачи:

  1. Изучение причин возникновения ошибок измерений, их свойств и законов распределения их вероятностей;

  2. Определение наиболее надёжного значения искомой величины из результатов её многократных измерений;

  3. Оценка точности непосредственно выполненных результатов измерений и предвычисление ожидаемой точности функций измеренных величин;

  4. Установление допусков, т.е. критериев, ограничивающих использование результатов измерений в заданных пределах точности.

26)Классификация ошибок измерений

Ошибки измерений подразделяют на грубые, систематические и случайные.

К грубым ошибкам относят ошибки, вызванные промахами и просчётами наблюдателя, неисправностями приборов, резким ухудшением внешних условий и др. С целью их обнаружения измерения выполняются многократно (не менее двух раз). Результаты измерений, содержащие грубые ошибки, необходимо выявлять и исключать из обработки.

К систематическим относят ошибки, которые входят в результаты измерений по тому или иному закону, как функции источников возникновения ошибок. В практике геодезических измерений применяют следующие способы уменьшения влияния систематических ошибок:

  1. Устанавливают закон появления систематических ошибок, после чего ошибки уменьшают введением поправок в результаты измерений;

  2. Применяют соответствующую методику измерений для того, чтобы систематические ошибки действовали не односторонне, а изменяли знаки;

  3. Используют определённую методику обработки результатов измерений.

Случайные ошибки являются наиболее ярким примером случайной величины. Их закономерности обнаруживаются только в массовом проявлении. Случайные ошибки неизбежны при измерениях и не могут быть исключены из единичного измерения. Влияние их можно лишь ослабить, повышая качество и количество измерений, а также надлежащей математической обработкой результатов измерений. Причин возникновения случайных ошибок измерений много: влияние внешних условий, неточности изготовления и юстировки приборов, неточности выполнения операций наблюдателем и т.д. Очевидно, что случайные ошибки являются результатом суммирования большого числа независимых элементарных ошибок. На основании центральной предельной теоремы Ляпунова можно считать, что случайные ошибки измерений подчиняются нормальному закону распределения.

В дальнейшем условно примем, что в любых измерениях грубые ошибки отсутствуют, основная часть систематических ошибок исключена из результатов, а остаточные систематические ошибки ничтожно малы, т.е. будем рассматривать только случайные ошибки ( , где хi — результат измерений, Х — истинное значение измеряемой величины.) Очевидно, что , а .

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]