
- •1. Введение
- •1.1 Общие положения
- •1.2 Унификация и стандартизация габаритных схем одноэтажных промышленных железобетонных
- •1.2.1 Унификация габаритных схем зданий
- •1.2.2 Унификация схем привязки колонн
- •1.2.4 Унификация схем привязки колонн в продольном
- •1.2.5 Унификация узлов сопряжения
- •1.3 Унификация конструктивных схем многоэтажных промышленных зданий
- •2. Нагрузки и воздействия
- •2.1 Общие положения
- •2.2 Классификация нагрузок
- •2.3 Сочетания нагрузок
- •2.4 Определение нагрузок
- •2.4.1 Расчет постоянных нагрузок
- •2.4.2 Расчет временных нагрузок
- •2.4.3 Учет ответственности зданий и сооружений
- •3. Материалы железобетонных конструкций.
- •3.1 Бетоны
- •3.1.1 Классификация бетонов
- •3.1.2 Общие технические требования к бетонам
- •3.1.3 Характеристики прочности бетонов
- •3.1.4 Деформационные характеристики бетонов
- •3.2 Арматура
- •3.2.1 Классификация арматуры
- •3.2.2 Характеристики прочности арматуры
- •3.2.3 Деформационные характеристики арматуры
- •3.3 Железобетон
- •3.3.1 Анкеровка арматуры в бетоне
- •3.3.2 Предварительное обжатие железобетонных элементов
- •4. Основы теории сопротивления железобетона
- •4.1 Стадии нагружения железобетонных изгибаемых элементов без напрягаемой арматуры
- •4.2 Стадии нагружения железобетонного изгибаемого элемента с предварительно напряженной арматурой
- •4.3 Предварительные напряжения в напрягаемой арматуре
- •4.3.1 Потери предварительного напряжения в арматуре
- •4.3.2 Определение потерь предварительного напряжения в арматуре
- •4.3.2.1 Потери от релаксации напряжений в арматуре
- •4.3.2.2 Потери от температурного перепада
- •4.3.2.3 Потери от деформации стальной формы (упоров)
- •4.3.2.4 Потери от деформации анкеров натяжных устройств
- •4.3.2.5 Потери от усадки бетона
- •4.3.2.6 Потери от ползучести бетона
- •4.3.3 Расчет полных потерь на различных стадиях работы железобетонных изделий
- •4.4 Предварительное напряжение в бетоне при его обжатии
- •5. Методы расчета элементов железобетонных конструкций по предельным состояниям
- •6. Общие положения теории конструирования железобетонных элементов
- •6.1 Общие требования к армированию элементов
- •6.2 Минимальный процент армирования сечений элементов
- •7. Общие положения расчета элементов по предельным состояниям первой группы
- •7.1.Общие положения расчета
- •7.2. Расчет на прочность железобетонных элементов по нормальным сечениям при действии изгибающих моментов
- •7.2.1 Расчет на прочность изгибаемых элементов прямоугольного поперечного сечения с двойной арматурой
- •7.2.2. Расчет на прочность изгибаемых элементов прямоугольного поперечного сечения с одиночной арматурой
- •7.2.2.1. Расчет элементов с одиночной ненапрягаемой или напрягаемой арматурой в растянутой зоне
- •7.2.3 Расчет на прочность железобетонных элементов прямоугольного сечения с двойной ненапрягаемой арматурой
- •7.2.4 Расчет на прочность железобетонных элементов прямоугольного сечения с двойной напряженной арматурой
- •7.2.5 Расчет на прочность железобетонных изгибаемых элементов таврового поперечного сечения с одинарной арматурой
- •7.2.5.1 Расчет элемента с тавровым поперечным сечением при положении нейтральной оси в полке тавра
- •7.2.5.2 Расчет элемента таврового поперечного сечения при положении нейтральной оси на ребре тавра
- •7.2.6 Расчет на прочность изгибаемых элементов таврового поперечного сечения с двойной арматурой
- •7.3 Расчет на прочность изгибаемых элементов по наклонным сечениям. Основные положения
- •7.3.1 Расчет на прочность изгибаемых элементов при действии поперечных сил по бетонной полосе между наклонными сечениями
- •7.3.2 Расчет на прочность изгибаемого элемента по наклонным сечениям на действие поперечных сил
- •7.3.2.1 Проверочный расчет на прочность по наклонному сечению при действии поперечной силы
- •7.3.2.2 Проектировочный расчет на прочность по наклонному сечению при действии поперечной силы
- •7.3.4 Расчет отгибов
- •7.3.5 Расчет железобетонных элементов на прочность по наклонным сечениям при действии изгибающего момента
- •7.3.6 Построение эпюры арматуры для изгибаемых железобетонных элементов
- •7.4 Расчет на прочность внецентренно сжатых элементов
- •7.4.1 Основные положения расчета
- •7.4.2 Конструирование сжатых элементов
- •7.4.3 Характер нагружения сжатых элементов
- •7.4.4 Расчет на прочность сжатых элементов
- •7.5 Расчет на прочность растянутых железобетонных элементов
- •7.5.1 Общие положения расчета
- •7.5.2 Расчет центрально растянутых элементов
- •7.5.3 Расчет внецентренно растянутых элементов при малых эксцентриситетах
- •7.5.4 Расчет внецентренно растянутых элементов при больших эксцентриситетах приложения растягивающего усилия
- •7.6 Расчет железобетонных элементов на местное сжатие
- •7.7 Расчет железобетонных элементов на продавливание
- •7.7.1 Общие положения расчета
- •7.7.2 Расчет на продавливание при наличии поперечной арматуры
- •8. Расчет элементов железобетонных конструкций по предельным состояниям второй группы
- •8.1 Определение момента образования трещин, нормальных к продольной оси элемента
- •8.2.1 Определение момента образования трещин и моментов внешних сил
- •8.2 Расчет железобетонных элементов по раскрытию трещин
- •8.2.1 Общие положения расчета
- •8.2.2 Определение ширины раскрытия трещин, нормальных к продольной оси элемента
- •8.2.3 Определение напряжений в растянутой арматуре изгибаемых предварительно напряженных элементов
- •8.2.4 Методика расчета по раскрытию трещин в зависимости от характера действующих нагрузок
- •8.3 Расчет железобетонных изгибаемых элементов на жесткость
- •8.3.1 Общие положения расчета
- •8.3.2 Определение линейных перемещений точек нейтральной оси железобетонного элемента на участках без трещин в растянутой зоне
- •8.3.3 Определение линейных перемещений точек нейтральной оси железобетонного элемента на участках с трещинами в растянутой зоне бетона
4.3.1 Потери предварительного напряжения в арматуре
Как было установлено практикой эксплуатации железобетонных изделий, напряжения предварительного растяжения (σsp) в напрягаемой арматуре с течением времени уменьшаются под действием различных факторов. Это вызывает уменьшение усилия обжатия, а следовательно, и напряжений в бетоне (σbp) снижая эффект предварительного напряжения.
Точный учет факторов, влияющих на потери напряжения в арматуре, весьма сложен. Для практических расчетов нормы СП52-102-2004 предусматривают учитывать снижение предварительных напряжений в арматуре на 2-х этапах. Первый этап охватывает период нагружения до передачи усилия на бетон (первые потери). Второй этап – после передачи усилия на бетон (вторые потери).
Первые потери предварительного напряжения включают потери от релаксации предварительных напряжений в арматуре, потери от температурного перепада при термической обработке конструкций, потери от деформации формы (упоров), потери от деформации анкеров.
Вторые потери предварительного напряжения включают потери от усадки и ползучести бетона.
4.3.2 Определение потерь предварительного напряжения в арматуре
4.3.2.1 Потери от релаксации напряжений в арматуре
Этот вид потерь зависит от вида арматуры, способа натяжения, степени натяжения. Количественно все потери определяют по эмпирическим формулам. Считают, что этот вид потерь проявляет себя полностью через 5…7 суток.
При механическом способе натяжения арматуры этот вид потерь рассчитывают следующим образом:
- для арматуры классов Вр1200 - Вр1500, К1400, К1500
; (1.34);
- для арматуры классов А600 - А1000
Δσsp1 = 0,lσsp - 2,0, (1.35)
где σsp вычисляют по формулам (1.32-1.33.), а величину Rs,n – по формулам (1.14.-1.15.)
При электротермическом или электромеханическом способах натяжения арматуры расчет ведут по следующим формулам:
- для арматуры классов Вр1200 - Вр1500, К1400, К1500
Δσsp1 = 0,05σsp. (1.36);
- для арматуры классов А600 - А1000
Δσsp1 = 0,03σsp, (1.37)
В приведенных формулах σsp принимают в МПа. При возможных значениях Δσsp1<0 (см формулу(1.34.)) следует принимать Δσsp1=0, что более точно отражает физическую картину процесса разупрочнения напряженной арматуры.
4.3.2.2 Потери от температурного перепада
Температурный перепад есть разность температур натянутой арматуры в зоне нагрева и устройства, воспринимающего усилия натяжения при нагреве бетона.
Количественно эти потери следует определять по эмпирической формуле:
Δσsp2 = 1,25 Δt. (1.38)
где Δt – величина температурного перепада, 0С;
1,25 – эмпирический коэффициент.
При отсутствии точных данных по температурному перепаду допускается принимать Δt = 65 °С.
Если натяжение регулируют в процессе нагрева, то величину Δσsp2 принимают равной нулю.
4.3.2.3 Потери от деформации стальной формы (упоров)
Этот вид потерь зависит от конструкции форм и от технологии создания предварительного напряжения, а также от конструкции напрягающего приспособления.
Эти
потери рассчитывают только при
неодновременном натяжении стержней.
Количественно эти потери определяют
по эмпирической формуле:
, (1.39)
где п - число стержней (групп стержней), натягиваемых неодновременно;
Δl - сближение упоров по линии действия усилия натяжения арматуры, определяемое из расчета деформации формы;
l - расстояние между наружными гранями упоров.
При отсутствии данных о конструкции формы и технологии изготовления допускается принимать Δσsp3 = 30 МПа.
При электротермическом способе натяжения арматуры потери от деформации формы не учитываются, поскольку они уже учтены при определении полного удлинения арматуры.