
- •1. 1. Определение положения точки в пространстве.
- •1.2.Вектор перемещения. Для определения перемещения точки в пространстве вводят вектор перемещения.
- •2.1 Вектор скорости.
- •2.2 Вектор ускорения.
- •3.1 Кинематика твердого тела.
- •3.2. Число степеней свободы .
- •4 .Вращательное движение тел .
- •5. Движение отдельных точек вращающегося твердого тела.
- •6.Плоское движение твердого тела.
- •7.1. Сила. Определения:
- •7.2. Сложение сил и разложение силы на составляющие.
- •7.3. Проекции силы на плоскость и ось.
- •8.1. Статическое и динамическое проявление сил.
- •8.3. Принцип независимости действия сил.
- •9.1 Момент силы относительно произвольного центра.
- •9.2. Момент силы относительно произвольной оси.
- •9.3. Момент силы оТносительно координатной оси.
- •10.Основной закон динамики. Уравнение моментов для тела движущего по окружности
- •Уравнение моментов относительно произвольного центра.
- •11.Движение тел в поле центральных сил.
- •Считая массу планеты постоянной, можно далее записать:
- •12. Основной закон динамики системы материальных точек.
- •13.Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси.
- •14. Основной закон динамики тела переменной массы (уравнение Мещерского) для тела с убывающей массой.
- •16.1 Относительность механического движения.
- •16.2. Галилеевы преобразования координат и закон сложения скоростей.
- •16.3. Принцип относительности Галилея, его физический смысл.
- •17.1 Постулаты Эйнштейна.
- •17.2. "Радиолокационный" метод (метод коэффициента "k ").
- •19. 1Сравнение поперечных размеров тел.
- •19.2 Эффект "сокращения" длин.
- •20.1 Преобразования Лоренца.
- •20.2. Интервал. Инвариантность интервала.
- •21.1 Релятивистская масса, релятивистский импульс.
- •21.2Релятивистское уравнение движения.
- •22.1. Силы инерции.
- •22.2. Силы инерции во вращающихся системах отсчета.
- •22.3. Силы инерции Кориолиса.
- •22.4. Зависимость веса тел от географической широты местности.
- •23. Силы трения. Сухое трение. Силы трения скольжения.
- •23.2. Силы трения качения.
- •24. 1Вязкое трение
- •24.2 Движение тел в сопротивляющейся среде.
- •25.1 Упругие силы.
- •25.2Продольное сжатие и растяжение. Закон Гука.
- •26.1Деформация сдвига
- •26.2Деформация кручения.
- •27. Закон всемирного тяготения.
- •28.1 Потенциальная энергия гравитационного взаимодействия, гравитационный потенциал.
- •28.2Связь напряжённости и потенциала поля.
- •29.1 Работа и энергия
- •29.2Работа силы тяжести.
- •29.3Работа упругих сил.
- •30 .1 Работа и кинетическая энергия.
- •30.2Работа центральных сил.
- •30.3Потенциальная энергия.
- •30.3Нормировка потенциальной энергии, закон сохранения энергии.
- •31.1Момент инерции твёрдого тела.
- •31.2Теорема Штейнера.
- •32. Кинетическая энергия твёрдого тела для различных типов движения.
- •1.Поступательное движение
- •2.Вращательное движение
- •3.Плоское движение тела
- •33.1 Гироскопы.
- •33.2 Прецессия волчка.
- •34.1Давление покоящейся жидкости.
- •36. Уравнение поверхности уровня
- •37. Закон паскаля
- •38. Сообщающиеся сосуды заполнены однородной жидкостью
- •39. Закон архимеда Тело погружено в жидкость (рис. 73).
- •На его поверхность со стороны жидкости действуют силы давления, выделим в теле объем малого сечения, ось которого вертикальна. На верхнюю и нижнюю грани этого объема действуют силы давления:
- •40. Механика движущихся жидкостей.
- •40.1. Введение
- •Определения
- •40.2. Расход жидкости
- •40.3. Уравнение неразрывности струи жидкости
- •41 .1Уравнение бернулли
- •41.2.Формула торичелли
- •42.1Ламинарнре и турбулентное течение жидкости. Число рейнольдса.
- •42.2. Формула пуазейля
- •43.1Колебательное движение
- •44. Собственные колебания
- •45. Затухающие колебания
- •46. Вынужденные колебания
- •47. 1.Математический маятник
- •47.2 Пружинные маятники
- •48. Геометрическое представление колебаний.
- •49. Сложение одинаково направленных колебаний.
- •51. Сложение взаимно перпендикулярных колебаний.
- •52. Гармонический анализ периодических движений.
- •53. Гармонический анализ периодических движений.
- •55.1. Упругие волны.
- •55.2. Распространение упругих возмущений в твёрдом теле.
- •55.3. Отражение упругих импульсов от границы раздела сред.
- •56.1.Уравнение плоской волны, движущейся в определённом координатном направлении.
- •56.2. Уравнение плоской волны, движущейся в произвольном направлении в пространстве.
- •57.1. Продольные волны в твёрдом теле. Волновое уравнение.
- •57.2. Упругие волны в газах. Волновое уравнение.
- •58.1. Интерференция воли.
- •58.2.Стоячие волны.
- •54. Колебания треугольной формы
36. Уравнение поверхности уровня
Поверхностью уровня называют такую поверхность, во всех точках которой давление одинаково (dP=0)
то, с учетом уравнение Эйлера:
для поверхности уровня:
В случае идеальной жидкости:
Пример:
Пусть жидкость покоится в поле тяготения 3емли.
Плоскость 0XY горизонтальна, а ось z направлена вертикально вверх. В этом случае:
Тогда:
т.е. z=const,
т.о. поверхности уровня (в частности,
свободная поверхность) горизонтальны.
37. Закон паскаля
Жидкость покоится в поле тяготения Земли. В этом случае уравнения Эйлера имеют вид:
(282)
(283)
( 284)
С учетом (282) и (283) последнее уравнение (284) принимает вид:
(285)
откуда:
(286)
где
удельный вес жидкости. Интегрируя
(286), получаем
(287)
Постоянная интегрирования будет определена, если в точке с координатой z0 известно давление p0 . Тогда
Последнее выражение обычно записывают в виде:
(288)
т.е. для жидкости, покоящейся в поле
тяготения Земли, сумма геометрической
(Z) и пьезометрической (p/))
высот для всех точек объема жидкости
одинакова. Это и есть закон Паскаля.
38. Сообщающиеся сосуды заполнены однородной жидкостью
Свободные поверхности в левом и правом коленах находятся на уровнях Z1 и Z2, а давление на этих поверхностях равно атмосферному Рa. Сравним свободные поверхности с общей для обоих сосудов частью, уровнем Z0, на котором давление равно P0, как показано на рис. 71.
Откуда:
(рис. 71)
Следовательно, свободные поверхности устанавливаются на одном уровне.
39. Закон архимеда Тело погружено в жидкость (рис. 73).
Рис.73.
На его поверхность со стороны жидкости действуют силы давления, выделим в теле объем малого сечения, ось которого вертикальна. На верхнюю и нижнюю грани этого объема действуют силы давления:
Равнодействующая сил давления в проекции на вертикальную ось равна:
где: dS - проекция dS1 (или dS2) на горизонтальную плоскость. Разность давлений по закону Паскаля равна
где: dZ - разность уровней центров граней выделенного объема. Тогда равнодействующая сил давления равна
где dV - величина выделенного объема.
Вертикальная проекция сил давления, действующих на всю смоченную поверхность тела, может быть получена путем интегрирования предыдущего выражения:
т.е. сила, действующая со стороны жидкости на погруженное в нее тело по величине равна весу жидкости, вытесненной телом.
Формулировка закона: на тело, погруженное в жидкость действует выталкивающая сила, равная весу жидкости в объеме, вытесненном телом , и приложенная в той точке смоченной поверхности тела, в которой вертикаль, проведенная через центр масс вытесненной жидкости, пересекает эту поверхность.
Существенным в формулировке закона Архимеда является правильное указание точки приложения выталкивающей силы. Действительно, поскольку сила Архимеда обусловлена действием распределенных по поверхности сил давления со стороны жидкости, то и равнодействующая сил давления должна быть приложена к смоченной поверхности тела (но не к центру масс вытесненной жидкости, как это часто утверждается). Кроме того, наличие в плавающем теле деформаций можно объяснить только при таком рассмотрении силы Архимеда.