
- •1. 1. Определение положения точки в пространстве.
- •1.2.Вектор перемещения. Для определения перемещения точки в пространстве вводят вектор перемещения.
- •2.1 Вектор скорости.
- •2.2 Вектор ускорения.
- •3.1 Кинематика твердого тела.
- •3.2. Число степеней свободы .
- •4 .Вращательное движение тел .
- •5. Движение отдельных точек вращающегося твердого тела.
- •6.Плоское движение твердого тела.
- •7.1. Сила. Определения:
- •7.2. Сложение сил и разложение силы на составляющие.
- •7.3. Проекции силы на плоскость и ось.
- •8.1. Статическое и динамическое проявление сил.
- •8.3. Принцип независимости действия сил.
- •9.1 Момент силы относительно произвольного центра.
- •9.2. Момент силы относительно произвольной оси.
- •9.3. Момент силы оТносительно координатной оси.
- •10.Основной закон динамики. Уравнение моментов для тела движущего по окружности
- •Уравнение моментов относительно произвольного центра.
- •11.Движение тел в поле центральных сил.
- •Считая массу планеты постоянной, можно далее записать:
- •12. Основной закон динамики системы материальных точек.
- •13.Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси.
- •14. Основной закон динамики тела переменной массы (уравнение Мещерского) для тела с убывающей массой.
- •16.1 Относительность механического движения.
- •16.2. Галилеевы преобразования координат и закон сложения скоростей.
- •16.3. Принцип относительности Галилея, его физический смысл.
- •17.1 Постулаты Эйнштейна.
- •17.2. "Радиолокационный" метод (метод коэффициента "k ").
- •19. 1Сравнение поперечных размеров тел.
- •19.2 Эффект "сокращения" длин.
- •20.1 Преобразования Лоренца.
- •20.2. Интервал. Инвариантность интервала.
- •21.1 Релятивистская масса, релятивистский импульс.
- •21.2Релятивистское уравнение движения.
- •22.1. Силы инерции.
- •22.2. Силы инерции во вращающихся системах отсчета.
- •22.3. Силы инерции Кориолиса.
- •22.4. Зависимость веса тел от географической широты местности.
- •23. Силы трения. Сухое трение. Силы трения скольжения.
- •23.2. Силы трения качения.
- •24. 1Вязкое трение
- •24.2 Движение тел в сопротивляющейся среде.
- •25.1 Упругие силы.
- •25.2Продольное сжатие и растяжение. Закон Гука.
- •26.1Деформация сдвига
- •26.2Деформация кручения.
- •27. Закон всемирного тяготения.
- •28.1 Потенциальная энергия гравитационного взаимодействия, гравитационный потенциал.
- •28.2Связь напряжённости и потенциала поля.
- •29.1 Работа и энергия
- •29.2Работа силы тяжести.
- •29.3Работа упругих сил.
- •30 .1 Работа и кинетическая энергия.
- •30.2Работа центральных сил.
- •30.3Потенциальная энергия.
- •30.3Нормировка потенциальной энергии, закон сохранения энергии.
- •31.1Момент инерции твёрдого тела.
- •31.2Теорема Штейнера.
- •32. Кинетическая энергия твёрдого тела для различных типов движения.
- •1.Поступательное движение
- •2.Вращательное движение
- •3.Плоское движение тела
- •33.1 Гироскопы.
- •33.2 Прецессия волчка.
- •34.1Давление покоящейся жидкости.
- •36. Уравнение поверхности уровня
- •37. Закон паскаля
- •38. Сообщающиеся сосуды заполнены однородной жидкостью
- •39. Закон архимеда Тело погружено в жидкость (рис. 73).
- •На его поверхность со стороны жидкости действуют силы давления, выделим в теле объем малого сечения, ось которого вертикальна. На верхнюю и нижнюю грани этого объема действуют силы давления:
- •40. Механика движущихся жидкостей.
- •40.1. Введение
- •Определения
- •40.2. Расход жидкости
- •40.3. Уравнение неразрывности струи жидкости
- •41 .1Уравнение бернулли
- •41.2.Формула торичелли
- •42.1Ламинарнре и турбулентное течение жидкости. Число рейнольдса.
- •42.2. Формула пуазейля
- •43.1Колебательное движение
- •44. Собственные колебания
- •45. Затухающие колебания
- •46. Вынужденные колебания
- •47. 1.Математический маятник
- •47.2 Пружинные маятники
- •48. Геометрическое представление колебаний.
- •49. Сложение одинаково направленных колебаний.
- •51. Сложение взаимно перпендикулярных колебаний.
- •52. Гармонический анализ периодических движений.
- •53. Гармонический анализ периодических движений.
- •55.1. Упругие волны.
- •55.2. Распространение упругих возмущений в твёрдом теле.
- •55.3. Отражение упругих импульсов от границы раздела сред.
- •56.1.Уравнение плоской волны, движущейся в определённом координатном направлении.
- •56.2. Уравнение плоской волны, движущейся в произвольном направлении в пространстве.
- •57.1. Продольные волны в твёрдом теле. Волновое уравнение.
- •57.2. Упругие волны в газах. Волновое уравнение.
- •58.1. Интерференция воли.
- •58.2.Стоячие волны.
- •54. Колебания треугольной формы
23.2. Силы трения качения.
Трение качения возникает при качении одного твердого тела по поверхности другого. При попытке сдвинуть тело по поверхности другого в плоскости соприкосновения возникает
с
ила
препятствующая этому (рис. 43).
Положим, что оба тела являются абсолютно твердыми, недеформируемыми, В этом случае нормальная составляющая реакции проходит через точку касания и центр масс катка (считаем его однородным симметричным телом, например, цилиндром). При такой модели любая по величине сила может вызвать качение катка, т.е. сопротивление движению.
не
возникает. Более того, сила
должна вызывать угловое ускорение при
любой по величине силе
,
что противоречит опыту.
Сопротивление качению может возникать в том случае, если нормальная реакция смещается относительно вертикального диаметра катка в сторону движения. Это происходит в том случае, если давление катка на поверхность будет не в точке, а по участку поверхности, а интенсивность давления будет больше впереди вертикального диаметра катка, как показано на рис. 44.
Рис.44
Следовательно, поверхность должна деформироваться, причем деформации будут несимметричными относительно вертикального диаметра.
Положим, что
сила
вызывает равномерное качение катка,
т.е.
Откуда
(190)
Здесь
(коэффициент трения качения) является
размерной величиной. Смысл его- ''плечо''
нормальной составляющей реакции
поверхности.
24. 1Вязкое трение
Вязкое трение возникает при относительном движении слоёв жидкости или газа. Основные законы вязкого трения получены опытным путём.
Ньютон
установил, что если под действием силы
площадка
площади
движется равномерно со скоростью
относительно площадки
(рис.45),
Рис.45
На подвижную площадку действуют силы сопротивления движению (силы вязкого трения):
где
- расстояние между площадками (слоями),
-
коэффициент вязкого трения определяемая
свойствами вязкой среды, заполняющей
промежуток между площадками.
При движении тел в вязкой среде на них действуют силы сопротивления движению.
Стокс получил выражение для этих сил. При малых скоростях.
(192)
где:
-
стоксова сила сопративления,
-
плотность среды,
-
скорость тела,
-коэффициент,
определяемый геометрией тела,
-
площадь проекции тела на плоскость,
перпендикулярную направлению движения.
24.2 Движение тел в сопротивляющейся среде.
При достаточно больших скоростях тел (или если форма тела является плохо обтекаемой) силы Стокса становятся пропорциональны квадрату скорсти:
Положим, что тело начинает падать под действием силы тяжести в сопротивляющейся среде. Пренебрегая силой Архимеда, запишем:
С
течением времени скорость тела
возрастает, возрастает и сила Стокса.
Наконец, силы тяжести и Стокса
уравновешиваются, после чего начинается
равномерное движение тела с установившейся
скоростью
.
Определим зависимость скорости от
проходимого телом пути и значение
установившейся скорости. Для этого
сначала преобразуем (194):
Обозначим:
Тогда:
Или:
Интегрируя
(195), получим:
Константу интегрирования находим из начальных условий (x=0 и =0):
Подставив
(197) в (196) получим
Или:
Откуда:
Через
достаточно большой промежуток времени
(
)
скорость тела перестаёт изменяться.
Следовательно, значение установившейся
скорости равно
(178) и (179) и дают искомое решение поставленной задачи.