
- •Примеры оформления поперечного профиля конструкций земляного полотна автомобильной дороги
- •Справочная энциклопедия дорожника
- •Проектирование автомобильных дорог
- •Содержание
- •Введение
- •Введение
- •Раздел первый. Обоснование проектных решений
- •Глава 1. Классификация и нормы проектирования автомобильных дорог
- •1.1 Классификация автомобильных дорог
- •1.2. Нормы проектирования автомобильных дорог
- •1.3. Расчетные скорости, нагрузки и габаритные размеры подвижного состава
- •1.4. Охрана окружающей среды
- •Приложение 1. Список рекомендуемых нормативно-технических документов
- •1.1. Общие стандарты
- •1.2. Грунты, земляное полотно, торф
- •1.3. Асфальтобетонные смеси, битум
- •1.3. Бетон, железобетон. Бетонные смеси, щебень, гравий, песок, цемент, шлаки, шламы и другие материалы
- •1.5. Автомобильные, железные дороги, аэродромы, земляное полотно дорог, мосты и трубы, укрепительные работы (изыскания, проектирование, строительство)
- •1.6. Основания и фундаменты
- •1.7. Изыскания автомобильных, железных дорог, аэродромов
- •1.8. Эксплуатация автомобильных дорог
- •1.9. Геотекстиль
- •1.10. Экология, климатология
- •1.11. Безопасность движения и техника безопасности
- •Глава 2. Организация проектирования автомобильных дорог
- •2.1. Общие положения
- •2.2. Предпроектное проектирование
- •2.3. Разработка проектной документации
- •2.4. Разработка рабочих чертежей
- •2.5. Состав проектной документации
- •Раздел 1. Общая пояснительная записка.
- •Раздел 2. Документы согласований.
- •Раздел 3. Отвод земель.
- •Раздел 4. Разделение собственности и стоимости строительства (реконструкции) по балансодержателям.
- •Раздел 5. Охрана окружающей среды.
- •Раздел 6. Строительные решения по автомобильной дороге.
- •Раздел 7. Строительные решения по искусственным сооружениям:
- •Раздел 8. Организация строительства:
- •2.6. Оформление проектной документации
- •2.2. Пример продольного профиля вновь проектируемых автомобильных дорог
- •Задание на разработку инженерного проекта капитального ремонта автомобильной дороги м-10 «Россия» в Новгородской области
- •Перечень технических документов, подлежащих использованию при разработке обоснования инвестиций
- •Перечень материалов и документов, включаемых в состав обоснования инвестиций (ои).
- •Перечень материалов и документов, включаемых в состав обосновывающих материалов инженерного проекта (ип).
- •Глава 3. Современная технология изысканий автомобильных дорог
- •3.1. Особенности традиционной технологии изысканий автомобильных дорог и ее анализ
- •3.2. Особенности технологии изысканий автомобильных дорог при проектировании на уровне сапр-ад
- •3.4. Методы обоснования полосы варьирования конкурирующих вариантов трассы
- •3.5. Цифровое моделирование рельефа, ситуации и геологического строения местности
- •3.6. Виды цифровых моделей местности
- •3.7. Методы построения цифровых моделей местности
- •3.8. Математическое моделирование местности
- •3.9. Задачи, решаемые с использованием цифровых и математических моделей
- •Глава 4. Экономическое обоснование строительства автомобильных дорог и мостовых переходов
- •4.1. Структура экономического обоснования дорожного строительства
- •4.2. Перспективный парк автомобилей
- •4.3. Прогнозирование перспективной интенсивности движения
- •4.4. Методы оценки общественной эффективности инвестиционных проектов дорожного строительства
- •4.5. Процедуры учета неопределенности
- •4.6. Элементы затрат-выгод инвестиционных проектов дорожного строительства
- •Глава 5. Топографо-геодезическое обоснование проектов
- •5.1. Геодезические опорные сети
- •5.2. Обозначение пунктов государственных геодезических сетей на местности
- •5.3. Привязка к пунктам государственных геодезических сетей
- •2. Привязка трассы к двум пунктам геодезической сети способом прямой засечки.
- •3. Привязка трассы к двум пунктам геодезической сети способом обратной засечки.
- •4. Привязка трассы к пунктам геодезической сети наземно-космическим способом.
- •5.4. Планово-высотное обоснование топографических съемок
- •5.5. Электронная тахеометрическая съемка
- •5.6. Наземно-космическая съемка
- •5.7. Наземное лазерное сканирование
- •Глава 6. Инженерно-геологическое обоснование проектов
- •6.1. Общие сведения об организации и составе инженерно-геологических изысканий
- •6.2. Современные технические средства, применяемые при инженерно-геологических изысканиях
- •6.3. Инженерно-геологические изыскания на полосе варьирования трассы
- •6.4. Инженерно-геологические изыскания по принятому варианту трассы
- •6.5. Разведка местных дорожно-строительных материалов
- •6.6. Лабораторные испытания и полевые методы исследования физико-механических свойств грунтов и материалов
- •6.7. Геофизические методы инженерно-геологических изысканий
- •6.8. Камеральная обработка и представляемые материалы
- •Глава 7. Инженерно-гидрометеорологическое обоснование проектов
- •7.1. Состав инженерно-гидрометеорологического обоснования проектов
- •7.2. Технология инженерно-гидрометеорологических изысканий
- •7.3. Морфометрические работы
- •7.4. Гидрометрические работы
- •7.5. Аэрогидрометрические работы
- •Раздел второй. Основные проектные работы
- •Глава 8. Обоснование требований к геометрическим элементам автомобильных дорог
- •8.1. Элементы плана автомобильных дорог
- •8.2. Элементы поперечных профилей
- •8.3. Элементы продольного профиля
- •8.4 Ширина проезжей части и земляного полотна
- •8.5. Остановочные, краевые полосы и бордюры
- •8.6. Поперечные уклоны элементов дороги
- •8.7. Нормы проектирования плана и продольного профиля
- •8.8. Переходные кривые
- •8.9. Виражи
- •8.10. Уширение проезжей части
- •8.11. Серпантины
- •8.12. Мосты и трубы
- •8.13. Тоннели
- •Глава 9. План автомобильных дорог. Принципы ландшафтного проектирования
- •9.1. Выбор направления трассы
- •9.2. Элементы клотоидной трассы
- •9.3. Принципы трассирования
- •9.4. Цели и задачи ландшафтного проектирования*
- •9.5. Согласование элементов трассы с ландшафтом
- •9.6. Особенности трассирования автомобильных дорог в характерных ландшафтах
- •9.7. Согласование земляного полотна с ландшафтом
- •9.8. Правила обеспечения зрительной плавности и ясности трассы
- •Глава 10. Проектирование продольного профиля автомобильных дорог
- •10.1. Принципы проектирования продольного профиля
- •10.2. Критерии оптимальности
- •10.3. Комплекс технических ограничений
- •10.4. Техника проектирования продольного профиля в традиционном классе функций
- •Глава 11. Проектирование земляного полотна
- •11.1. Элементы земляного полотна и общие требования к нему
- •11.2. Грунты для сооружения земляного полотна
- •11.3. Природные условия, учитываемые при проектировании земляного полотна
- •11.4. Учет водно-теплового режима при проектировании верхней части земляного полотна
- •11.5. Поперечные профили земляного полотна в обычных условиях
- •11.6. Проектирование насыпей на слабых основаниях
- •11.7. Проверка устойчивости откосов при проектировании высоких насыпей и глубоких выемок
- •11.8. Земляное полотно на склонах
- •Глава 12. Проектирование нежестких дорожных одежд
- •12.1. Общие сведения
- •12.2. Основы конструирования нежестких дорожных одежд
- •12.3. Расчеты нежестких дорожных одежд на прочность
- •12.4. Расчет конструкции дорожной одежды в целом по допускаемому упругому прогибу
- •12.5. Расчет по условию сдвигоустойчивости подстилающего грунта и малосвязных конструктивных слоев
- •12.6. Расчет конструкции дорожной одежды на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе
- •12.7. Обеспечение морозоустойчивости дорожной одежды
- •12.8. Осушение дорожной одежды и земляного полотна
- •Глава 13. Конструкции и основные положения расчета жестких дорожных одежд
- •13.1. Область применения. Основные виды покрытий
- •13.2. Общие требования к жестким дорожным одеждам. Основные принципы конструирования
- •13.3. Особенности конструкций жестких дорожных одежд
- •13.4. Основные положения расчета жестких дорожных одежд
- •Список литературы к главе 13
- •Глава 14. Особенности расчета жестких дорожных одежд
- •14.1. Напряжения в цементобетонном покрытии от внешней нагрузки
- •14.2. Определение разрушающей нагрузки для плит цементобетонного покрытия
- •14.3. Определение напряжений в цементобетонном покрытии по прогибам, измеренным в натуре
- •14.4. Определение эквивалентного модуля упругости и коэффициента поперечной деформации многослойного основания под жестким дорожным покрытием
- •14.5. Температурные напряжения
- •14.6. Устойчивость плит бетонных дорожных покрытий при повышении температуры
- •14.7. Прочность при усилении жестких покрытий слоем асфальтобетона или цементобетона
- •14.8. Устойчивость против выпирания асфальтобетонного слоя на цементобетонном основании
- •14.9. Устойчивость положения плиты со свободными краями при нагрузке от транспортных средств
- •Список литературы к главе 14
- •Глава 15. Проектирование системы поверхностного и подземного дорожного водоотвода
- •15.1. Система поверхностного и подземного дорожного водоотвода
- •15.2. Нормы допускаемых скоростей течения воды
- •15.3. Определение объемов и расходов ливневых и талых вод с малых водосборов
- •15.4. Гидравлический расчет дорожных канав
- •15.5. Гидравлический расчет отверстий малых мостов и труб
- •15.6. Косогорные сооружения поверхностного водоотвода
- •15.7. Укрепление русел за сооружениями
- •15.8. Расчет дренажа
- •15.9. Некоторые рекомендации к разработке региональных норм стока
- •Глава 16. Проектирование мостовых переходов
- •16.1. Основные сведения о проектировании переходов через большие водотоки
- •16.2. Гидрологические расчеты
- •16.3. Морфометрические расчеты
- •16.4. Прогноз природных деформаций русел рек
- •16.5. Расчет срезок пойменных берегов подмостовых русел и отверстий мостов
- •16.6. Расчет общего размыва
- •16.7. Определение максимальной глубины расчетного общего размыва
- •16.8. Расчет местного размыва у опор мостов
- •16.9. Расчет размывов переходов коммуникаций у мостовых переходов
- •16.10. Расчет характерных подпоров на мостовых переходах
- •Глава 17. Проектирование подходов, регуляционных и укрепительных сооружений
- •17.1. Условия работы пойменных насыпей
- •17.2. Проектирование подходов к мостам
- •17.3. Проектирование оптимальных пойменных насыпей
- •17.4. Расчет устойчивости откосов подтопляемых насыпей
- •17.5. Расчет осадок пойменных насыпей
- •17.6. Расчет скорости осадки насыпей на слабых основаниях
- •17.7. Задачи и принципы регулирования рек у мостовых переходов
- •17.8. Конструкции регуляционных сооружений на мостовых переходах
- •Глава 18. Пересечения и примыкания автомобильных дорог
- •18.1. Общие положения и требования по проектированию пересечений и примыканий в одном уровне
- •18.2. Классификация пересечений автомобильных дорог в разных уровнях и требования к ним
- •18.3. Элементы пересечений автомобильных дорог в разных уровнях
- •18.4. Задачи, решаемые при проектировании развязок движения в разных уровнях
- •18.5. Анализ условий пересечений при проектировании развязок
- •18.6. Пропускная способность развязок в разных уровнях и оценка безопасности движения
- •18.7. Технико-экономическое сравнение вариантов развязок движения
- •Глава 19. Особенности изысканий и проектирования дорог на многолетнемерзлых (вечномерзлых) грунтах
- •19.1. Распространение вечной мерзлоты на территории Российской Федерации
- •19.2. Дорожно-климатическое районирование первой зоны - зоны вечной мерзлоты России
- •19.3. Принципы проектирования и строительства дорог на многолетнемерзлых грунтах
- •19.4. Особенности водно-теплового режима естественных грунтов и земляного полотна автомобильных дорог в районах вечной мерзлоты
- •19.5. Особенности расчета дорожных конструкций нежесткого типа в условиях вечной мерзлоты
- •19.6. Особенности изысканий для строительства дорог на многолетнемерзлых грунтах
- •19.7. Особенности проектирования дорог на многолетнемерзлых грунтах
- •19.8. Земляное полотно автомобильных дорог на многолетнемерзлых грунтах
- •19.9. Требования к грунтам земляного полотна на многолетнемерзлых грунтах
- •19.10. Конструкции земляного полотна автомобильных дорог на многолетнемерзлых грунтах
- •19.11. Водоотводные сооружения
- •19.12. Проектирование земляного полотна и искусственных сооружений на наледных участках
- •Глава 20. Инженерное обустройство автомобильных дорог
- •20.1. Обслуживание дорожного движения
- •20.2. Дорожные знаки
- •20.3. Дорожная разметка
- •20.4. Направляющие устройства
- •20.5. Дорожные ограждения
- •20.6. Освещение автомобильных дорог
- •20.7. Составление схемы обстановки дороги
- •Глава 21. Проектирование реконструкции автомобильных дорог
- •21.1. Особенности реконструкции автомобильных дорог
- •21.2. Особенности изысканий для разработки проектов реконструкции автомобильных дорог
- •21.3. Реконструкция автомобильных дорог в плане и продольном профиле
- •21.4. Земляное полотно при реконструкции автомобильных дорог
- •21.5. Дорожные одежды при реконструкции автомобильных дорог
- •21.6. Особенности организации работ при реконструкции автомобильных дорог
- •Глава 22. Проектирование организации строительства
- •22.1. Цели и задачи проекта организации строительства
- •22.2. Строительный генеральный план
- •22.3. Календарный план строительства
- •22.4. Механизация дорожного строительства
- •22.5. Машины для земляных работ
- •22.6. Машины для уплотнения грунтов и материалов дорожных одежд
- •22.7. Определение потребности в основных строительных машинах, транспортных средствах и трудовых ресурсах
- •Глава 23. Оценка проектных решений при проектировании автомобильных дорог
- •23.1. Система показателей для оценки проектных решений
- •23.2. Определение предельной пропускной способности дороги и коэффициента загрузки движением
- •23.3. Расчет средней скорости движения транспортного потока
- •23.4. Расчет максимальной скорости движения одиночного автомобиля
- •23.5. Определение степени загрязнения придорожной полосы соединениями свинца
- •23.6. Расчет загрязнения атмосферного воздуха выбросами автомобильного транспорта
- •Глава 24. Оценка безопасности движения при проектировании дорог и их реконструкции
- •24.1. Влияние дорожных условий на безопасность движения
- •24.2. Оценка относительной опасности участков дороги и выявление опасных мест методом «коэффициентов относительной аварийности»
- •24.3. Выявление опасных мест метолом «коэффициентов безопасности»
- •24.4. Оценка обеспеченности безопасности движения на пересечениях в одном уровне
- •24.5. Оценка безопасности движения на пересечениях в разных уровнях
- •Раздел третий. Автоматизированное проектирование автомобильных дорог
- •Глава 25. Принципиальные основы автоматизированного проектирования автомобильных дорог и сооружений на них
- •25.1. Понятие о системах автоматизированного проектирования
- •25.2. Средства обеспечения систем автоматизированного проектирования
- •25.3. Функциональная структура сапр
- •25.4. Принципы оптимизации и моделирования при проектировании автомобильных дорог
- •Список литературы к главе 25
- •Глава 26. Система автоматизированного проектирования cad «credo»
- •26.1. Историческая справка
- •26.2. Функциональная структура подсистемы «Линейные изыскания»
- •26.3. Функциональная структура подсистемы «Дороги»
- •Глава 27. Система автоматизированного проектирования «indorcad/road»
- •27.1. Историческая справка
- •27.2. Функциональная структура системы автоматизированного проектирования «IndorCad/Road». Раздел «План»
- •27.3. Раздел «Продольный профиль»
- •27.4. Раздел «Верх земляного полотна»
- •27.5. Раздел «Поперечный профиль»
- •27.6. Графический редактор «IndorDrawing»
- •Глава 28. Автоматизированное проектирование плана автомобильных дорог
- •28.1. Автоматизированное проектирование плана и продольного профиля. Общий методологический подход
- •28.2. Методы «однозначно определенной оси»
- •28.3. Метод «опорных элементов»
- •28.4. Метод «сглаживания эскизной линии трассы»
- •28.5. Методы «свободной геометрии». Сплайн-трассирование
- •Глава 29. Автоматизированное проектирование продольного профиля автомобильных дорог
- •29.1. Метод «опорных точек»
- •29.2. Метод «проекции градиента»
- •29.3. Метод «граничных итераций»
- •29.4. Методы «свободной геометрии»
- •Глава 30. Автоматизированное проектирование оптимальных нежестких дорожных одежд
- •30.1. Особенности автоматизированного проектирования оптимальных нежестких дорожных одежд
- •30.2. Оптимизационный метод проектирования дорожных одежд нежесткого типа
- •30.3. Технология автоматизированного проектирования оптимальных дорожных одежд
- •Глава 31. Автоматизированное проектирование системы поверхностного водоотвода автомобильных дорог
- •31.1. Математическое моделирование стока ливневых вод с малых водосборов
- •31.2. Математическое моделирование стока талых вод с малых водосборов
- •31.3. Расчет отверстий и моделирование работы малых мостов и труб
- •31.4. Проектирование оптимальных водопропускных труб
- •Результаты проектирования оптимального сооружения
- •31.5. Проектирование оптимальной системы поверхностного водоотвода
- •Глава 32. Комплексная методология автоматизированного проектирования мостовых переходов
- •32.1. Принципы автоматизированного проектирования мостовых переходов
- •32.2. Аналитическая аппроксимация и универсальный метод определения расчетных гидрометеорологических характеристик
- •32.3 Комплексная программа расчета отверстий мостов «Рома»
- •32.4. Исходная информация и результаты расчета по программе «Рома»
- •I. Файл названий и свойств объектов расчета
- •II. Основной файл исходных данных
- •III. Файл измененных длин расчетных интервалов
- •IV. Файл измененных проекций длин расчетных интервалов
- •V. Файл измененных высот (отметок) дна русла
- •VI. Файл измененных высот (отметок) геологического ограничения размыву
- •VII. Файл измененных ширин русла
- •VIII. Файл координат типового водомерного графика
- •XIII. Файл фракционного состава донных отложений
- •I. Фактический водомерный график и гидрограф паводка
- •II. Расчетный водомерный график и тахограф паводка
- •III. Результаты расчета
- •32.5. Программа расчета уширений русел на мостовых переходах «Рур»
- •32.6. Исходная информация и результаты расчета по программе «Рур»
- •I. Файл названий объектов расчета
- •II. Основной файл исходных данных
- •III. Файл измененных длин расчетных интервалов
- •IV. Файл измененных проекций длин расчетных интервалов
- •V. Файл координат расчетной многолетней гидрологической характеристики водотока
- •Результаты расчета
- •Глава 33. Методы расчета соединительных рамп
- •33.1. Существующие принципы конструктивного решения участков ответвлений и примыканий соединительных рамп
- •33.2. Переходные кривые, требования к ним и методы их расчета
- •33.3. Расчет элементов соединительных рамп
- •33.4. Проектирование продольного профиля по соединительным рампам
- •33.5. Планово-высотное решение соединительных рамп
- •Глава 34. Оценка проектных решений при автоматизированном проектировании автомобильных дорог
- •34.1. Программы для оценки проектных решений
- •34.2. Построение перспективных изображений автомобильных дорог
- •34.3. Перцептивные изображения автомобильных дорог
- •34.4. Оценка зрительной плавности трассы
- •34.5. Определение показателей транспортно-эксплуатационных качеств автомобильных дорог
- •34.6. Оценка проектных решений автомобильных дорог на основе математического моделирования
- •34.7. Технико-экономическое сравнение вариантов автомобильных дорог и мостовых переходов
Глава 31. Автоматизированное проектирование системы поверхностного водоотвода автомобильных дорог
31.1. Математическое моделирование стока ливневых вод с малых водосборов
Одна из первых математических моделей стока была разработана еще в 1931г. М. М. Протодьяконовым, однако в связи с многодельностью расчетов и отсутствием в то время компьютерной техники она широкого распространения не получила.
Появление и стремительное совершенствование компьютерной техники предопределило ускоренное развитие методов математического моделирования, в частности, моделирования процесса формирования и стекания стока ливневых вод с водосборов.
Процесс формирования стока на каждом конкретном водосборе - сложнейшее природное явление. На него оказывает влияние большое количество независимых факторов, оценка которых затруднена из-за пространственной и временной их изменчивости.
Одна из первых математических моделей стока, реализующая идею проф. М.М. Протодьяконова, была разработана в 1983 году на кафедре проектирования дорог МАДИ (Федотов Г.А. Автоматизированное проектирование автомобильных дорог. - М.: Транспорт, 1986.- 318 с. ). Согласно этой модели бассейн любой сложной формы и любых размеров может быть представлен в виде системы эквивалентных по площади прямоугольников, примыкающих к главному логу (рис. 31.1). Учитывая, что время добегания ливневых вод по водосбору играет весьма существенную роль в формировании максимальных расходов, длины схематизированных прямоугольных водосборов целесообразно принимать равными фактическим длинам боковых логов. Тогда средняя ширина каждого схематизированного водосбора i-го бокового лога:
Bi = Fi/Li, где
Fi и Li - фактическая площадь и длина водосбора i-го лога, соответственно км2 и км.
Рис. 31.1. Схематизация водосбора: а - представление водосборов в плане; б - схематизация в виде эквивалентных по площади прямоугольников
Угол примыкания каждого бокового лога к главному принимают равным углу между направлением тальвега бокового лога и направлением потока в главном логу (см. рис. 31.1).
Полученный на каждый j-й момент времени паводка сосредоточенный расход в устье каждого i-го бокового лога Qij представляют в виде равномерно распределенных погонных расходов на фактической ширине каждого бокового лога в устьевой его части:
qij = Qij / Вyi, где
Вyi - фактическая ширина i-го лога в устьевой его части.
Таким образом, при описании неустановившегося течения ливневых вод по главному логу боковая приточность в каждый j-й момент времени может быть представлена в виде кусочно-постоянной функции (рис. 31.2).
Рис. 31.2. Представление боковой приточности по главному логу в виде кусочно-постоянной функции
Изменение хода дождя и потерь схематизируют исходя из следующего:
в начальный период дождь идет с меньшей интенсивностью, затем усиливается и в конце снова уменьшается;
попадая в почву, осадки впитываются, при этом, если интенсивность впитывания меньше скорости выпадения осадков, то формируется избыточный слой;
часть избыточного слоя в ходе протекания вниз по склонам задерживается растительностью, а часть заполняет различные углубления микрорельефа местности. Эти виды потерь целесообразно учитывать при обработке кривых впитывания;
ход дождя и потерь стока имеют разные интенсивности, вследствие чего избыточный слой формируется только в случае, когда интенсивность выпадения осадков больше интенсивности потерь стока (рис. 31.3).
Рис. 31.3. Замена графика хода дождя и впитывания ступенчатым очертанием с шагом Dt
Таким образом, можно построить типовые графики хода дождя и потерь (см. рис. 31.3) для каждого ливневого района и решить, какой ход дождя будет наиболее характерным, т.е. предложенная схема определения слоя стока может дополняться сообразно с местными условиями и возможностями.
Для использования этих данных в качестве исходной информации в математической модели формирования ливневого стока кривые хода дождя Н = f(t) и впитывания Р = f(t) заменяют ступенчатым очертанием с шагом по времени Dt (см. рис. 31.3).
Для расчета склонового стока на малых водосборах применяют уравнение кинематической волны (схема склонового стока «сплошным слоем»):
где (31.1)
hc - глубина склонового потока, м;
t - время, сек;
q - погонный расход, м3/с;
х - текущая координата, направленная от водораздела вниз по склону, м;
а - интенсивность ливня, м/с;
b - интенсивность впитывания, м/с;
тс - показатель ровности склонов (табл. 31.1);
Iс - уклон склона, ‰.
Таблица 31.1.
Показатели ровности поверхности тс
Морфологические признаки поверхности |
Показатель ровности m |
Бетонные плиты |
60 |
Мощение |
50 |
Засев травой |
40 |
Незаросшие ровные земляные поверхности; неукрепленные канавы |
30 |
Русла земляные ровные; русла полугорных рек; незаросшие поймы |
30 |
Русла земляные извилистые; галечно-валунные; суходолы ровные; поймы, заросшие на 10 % |
25 |
Русла земляные очень извилистые; суходолы извилистые; поймы, заросшие на 20 % |
20 |
Суходолы, засоренные камнем и заросшие; поймы, заросшие на 50 % |
15 |
Поймы, заросшие на 70 % |
10 |
Поймы, заросшие на 100 % |
5 |
Систему уравнений (31.1) проще всего решать в конечных разностях по схеме с вперед направленными разностями:
где
(31.2)
Dhnj - приращение глубины на п-м участке склона за j-й интервал времени Dtj, м;
хп - расчетный интервал длины, м;
aj, bj - интенсивности ливня и впитывания в j-й момент времени, м/с.
Уравнение (31.2) решают последовательно для каждой пары створов сверху вниз по склону, начиная с водораздела для каждого интервала времени (рис. 31.4). При этом в створе на водоразделе (i = 0) принимают глубину hoj = 0.
Рис. 31.4. Схема к расчету склонового стока: а - план; б - продольный разрез
Шероховатости и уклоны склонов могут быть назначены дифференцированно для каждого участка.
Форму живого сечения тальвегов боковых логов и главного лога аппроксимируют многоточечным профилем (рис. 31.5). Такая аппроксимация позволяет с достаточной точностью представлять живые сечения разнообразного очертания, в частности, треугольного, прямоугольного, трапецеидального и т.д.
Рис. 31.5. Аппроксимация живого сечения лога семиточечным профилем
Движение ливневых вод по тальвегу главного и боковых логов описывают системой уравнений неустановившегося течения жидкости переменной массы (с боковой приточностью):
динамического
(31.3)
неразрывности
где
Iл - уклон дна лога, ‰;
h - глубина потока, м;
l - длина по логу, м;
a0 » 1,03 - коэффициент Буссинеска (корректив количества движения);
q - боковая приточность в единицу времени на единицу длины лога, м3/(с.м);
g - ускорение силы тяжести, м/с2;
w - площадь живого сечения, м2;
q - проекция скорости присоединенных частиц жидкости на направление скорости потока в логу, м/с;
u - скорость потока, м/с;
a » 1,1 - коэффициент Кориолиса (корректив кинетической энергии);
t - время;
Q и К - расход и расходная характеристика, соответственно, м3/с.
Систему уравнений (31.3) решают в конечных разностях:
динамическое уравнение
(31.4)
уравнение неразрывности
где
(31.5)
hmj, h(m+1)j - глубины потока в m-м и (т+1)-м створах в j-й момент времени, м;
umj, u(m+1)j - соответственно скорости течения в m-м и (т+1)-м створах в j-й момент времени, м/с;
um(j-1)cp, umjcp - соответственно средние скорости течения в m-м расчетном участке лога в (j-l)-й и j-й моменты времени, м/с;
Dlm - длина т-го участка русла, м;
Iл - уклон лога, ‰;
Qmjcp, Kmjcp - соответственно расход и расходная характеристика сечения, средние на m-м участке лога в j-м интервале времени, м3/с;
qmj - боковая приточность на m-м участке лога в j-й момент времени, м3/(с.м);
wmjcp - средняя на m-м участке лога площадь живого сечения в j-й момент времени, м2;
qmjcp, hmjcp - средние на m-м участке лога боковая приточность и глубина в j-й момент времени;
ai - угол подхода i-го тальвега бокового лога к главному логу;
Qmj, Q(m+1)j - соответственно расходы в m-м и (т+1)-м створах в j-й момент времени, м3/с;
Dhmj, Dh(m+1)j - приращения глубины воды в соответствующих створах за время Dtj, м;
Bmj, B(m+1)j - ширины потока в соответствующих створах, м.
Шероховатости и уклоны тальвегов боковых логов назначают дифференцированно. Шероховатости и уклоны главного лога также можно задавать дифференцированно по его длине.
Последовательность детального расчета ливневого стока с малых водосборов, реализация которого возможна лишь при использовании компьютерной техники, следующая:
расчетный водосбор представляют в виде схематизированных прямоугольных водосборов и определяют исходные параметры (площади, ширины, длины, уклоны, шероховатости и характеристики поперечных сечений тальвегов);
заменяют кривые хода дождя Н = f(t) и впитывания Р = f(t) ступенчатым очертанием с шагом Dtj (см. рис. 31.3);
делят каждый i-й боковой лог по тальвегу, начиная от водораздела до его устья, на необходимое количество расчетных интервалов длины Dlmi;
главный лог по тальвегу также делят на значительное число участков Dlm, начиная от водораздела до замыкающего створа (рис. 31.6);
на первой ступеньке, начиная с момента начала стока (см. рис. 31.3), вычисляют интенсивность ливня ai = DHj /Dtj и интенсивность впитывания bi = DPj /Dtj;
отыскивают значения боковой приточности, применяя уравнение (31.2) последовательно сверху вниз для каждой пары створов каждого i-го бокового лога, начиная от водораздела;
находят сосредоточенные расходы в устьевых створах каждого i-го бокового лога, решая систему уравнений (31.4-31.5) последовательно для каждой пары створов вниз по тальвегу, начиная с водораздела;
Рис. 31.6. Схема деления главного лога на расчетные интервалы длины Dlm
строят эпюру боковой приточности главного лога, представляемую в виде кусочно-постоянной функции (см. рис. 31.2);
отыскивают значение расхода в замыкающем створе главного лога для первого интервала времени, решая систему уравнений (31.4-31.5) последовательно для каждой пары створов сверху вниз по тальвегу;
затем те же операции выполняют для второго интервала времени с учетом уже вычисленных за предшествующий период времени объемов стока на склонах и в логах и т.д.
На основе изложенного алгоритма канд. техн. наук И.В. Чистяковым в 1983 году разработана программа «STOK» для детального расчета ливневого стока с малых водосборов. Применение этой методики дает в ряде случаев возможность уменьшить расходы на строительство и эксплуатацию малых мостов и труб до 20 %.
Конечным итогом детального компьютерного расчета стока ливневых вод с малых водосборов является получение расчетного гидрографа ливневого стока в замыкающем створе водосбора Q = f(t), используемого в дальнейшем для расчетов отверстий малых водопропускных сооружений на автомобильных дорогах с учетом аккумуляции. Однако в случае необходимости может быть получена и другая информация, которая может интересовать инженера-дорожника: скорости течения, глубины и уровни воды, кривые свободной поверхности воды вдоль лога и т.д. на любой момент паводка.
Для дальнейших расчетов отверстий малых водопропускных сооружений по полученным расчетным гидрографам стока Q = f(t), в конечном итоге необходимо определять следующие величины:
максимальный расход ливневых вод, м3/с;
объем стока ливневых вод, м3;
длительность паводка, мин;
относительное время подъема паводка, мин;
полноту гидрографа расчетного паводка.