Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИНженеры 1,2Матем.doc
Скачиваний:
4
Добавлен:
13.11.2018
Размер:
4.13 Mб
Скачать

Основные правила дифференцирования.

Пусть С- постоянное, и - функции имеющие производные.

Тогда :

1)

2)

3)

4)

5)

6)

7) если , , т.е , где функции f (U) и U (x) имеют производные, то - правило дифференцирования сложной функции.

    1. Примеры решения задач.

Задача 1. Найти производные или следующих функций:

а)

б)

в)

г)

Решение:

а) Пользуясь правилом логарифмиро­вания корня и дроби, преобразуем правую часть:

Применяя правила и формулы дифференцирования, получим:

б) Предварительно прологарифмируем по основанию е обе части равенства:

Теперь дифференцируем обе части, считая сложной функцией от переменной х:

откуда

в) В данном случае зависимость между аргументом х и функцией у задана уравнением, которое не разре­шено относительно функции у. Чтобы найти производ­ную у', следует дифференцировать по х обе части задан­ного уравнения, считая при этом у функцией от х, а за­тем полученное уравнение решить относительно искомой производной у'. Имеем

Из полученного равенства, связывающего х, у, и у',

находим производную у':

откуда

г) Зависимость между переменными х и у задана па­раметрическими уравнениями. Чтобы найти искомую производную у', находим предварительно дифференци­алы dy и dx и затем берем отношение этих дифферен­циалов

Задача 2. Найти производную второго порядка

а)

б)

Решение: а) Функция у задана в неявном виде. Дифференцируем по х обе части заданного уравнения, считая при этом у функцией от х:

(1)

откуда

Снова дифференцируем по х обе части (1):

(2)

Заменив у' в (2) правой частью (1), получим:

б) Зависимость между переменными x и у задана параметрическими уравнениями. Чтобы найти произ­водную у', находим сперва дифференциалы dy и dx и за­тем берем отношение этих дифференциалов:

Тогда

Производная второго порядка . Следователь­но, чтобы найти у", надо найти дифференциал dy':

Тогда

Задача 3. Найти приближенное значение функции при исходя из ее точного зна­чения при

Решение: Известно, что дифференциал dy функ­ции представляет собой главную часть прира­щения этой функции .Если приращение аргумента мало по абсолютной величине, то приращение при­ближенно равно дифференциалу, т. е. . Так как , а то имеет место при­ближенное равенство:

Пусть , т. е.

Тогда

и

(1)

ли

Приближенное равенство (1) дает возможность найти значение функции при , если известно значение функции и ее производной при Прежде чем воспользоваться приближенным равен­ством ( 1 ) , находим числовое значение производной f'(x) при х= 6:

или

Применяя (1), получаем