
- •Введение
- •Теория теплопроводности
- •Механизмы переноса тепла
- •Методы изучения физических явлений
- •Температурное поле
- •Тепловой поток. Закон Фурье
- •Коэффициент теплопроводности
- •Дифференциальное уравнение теплопроводности
- •Уравнение теплопроводности
- •Лекция № 2 Условия однозначности для процессов теплопроводности
- •Граничные условия:
- •Теплопроводность в стационарном режиме
- •Многослойная стенка
- •Переменный коэффициент теплопроводности
- •Линейная плотность теплового потока:
- •Критический диаметр цилиндрической стенки
- •Передача теплоты через шаровую стенку
- •Плотность теплового потока
- •Теплопроводность при наличии внутренних источников теплоты
- •Теплопроводность однородной пластины
- •Теплопроводность однородного цилиндрического стержня
- •Нестационарные процессы теплопроводности
- •Аналитическое описание процесса
- •Анализ полученного решения
- •Охлаждение длинного прямоугольного стержня
- •Охлаждение цилиндра конечной длины
- •Приближенные методы решения задач теплопроводности
- •Метод конечных разностей
- •Численные методы решения задач теплопроводности при нестационарном режиме
- •Метод конечных элементов
- •Исследование процессов теплопроводности методом аналогий
- •Электротепловая аналогия
- •Конвективный теплообмен Основные понятия и определения
- •Дифференциальные уравнения конвективного теплообмена
- •Уравнение энергии
- •Уравнения движения
- •Уравнение сплошности
- •Гидродинамический и тепловой пограничные слои
- •Уравнение теплоотдачи.
- •Тепловой пограничный слой
- •Подобие и моделирование процессов конвективного теплообмена
- •Приведение математической формулировки краевой задачи к записи в безразмерной форме
- •Аналогично преобразуем и уравнение движения
- •Граничные условия
- •Условия подобия физических процессов
- •Следствия из условий подобия
- •Обработка результатов опыта
- •Теплоотдача при вынужденном продольном омывании плоской поверхности
- •Интегральные уравнения пограничного слоя
- •Теплоотдача при ламинарном пограничном слое
- •Нагрев диэлектриков в электромагнитном поле. Электромагнитное поле в диэлектрике.
- •Плоская электромагнитная волна в диэлектрике
- •Используя соотношения
- •Решение уравнения (1) имеет вид
- •Виды поляризации
- •Зависимости ε и tg δ от частоты и температуры
- •Температурные характеристики релаксационной поляризации
- •Структура электродугового разряда
- •Характеристика приэлектродных областей и протекающих в них процессов
- •Выделяющаяся на аноде мощность
- •Мощность, выделяющаяся на катоде
- •Электроды дуговых установок
- •Термохимический катод
- •Основные закономерности электродугового столба
- •Особенности дуги переменного тока
- •Устойчивость и регулирование параметров электрической дуги
- •Способы зажигания дуги
- •Процессы переноса в дуговых и плазменных электротехнологических установках
- •Физико-технические основы электронно-лучевого нагрева
- •Основы расчета устройств формирования электронных пучков элу
- •Потери энергии электронного пучка и энергетический баланс элу
- •Основы лазерного нагрева. Основные принципы работы лазеров
- •Типы оптических квантовых генераторов
- •Лазеры твердотельные с оптической накачкой
- •Основы технологии светолучевой обработки
- •Литература
Анализ полученного решения
Так как m1, m2, …, mn – ряд возрастающих чисел, то чем больше m, тем меньше роль последующего члена ряда по сравнению с предыдущим. Кроме того, чем больше число Fo, тем члены ряда будут убывать быстрее с увеличением номера n.
Исследования показали, что уже при Fo ³ 0,3 ряд (в) становится настолько быстросходящимся, что распределение температуры достаточно точно описывается первым членом ряда
.
Величина D1 является только функцией числа Bi (так как mn = f (Вi)) и заранее может быть рассчитана и табулирована.
Если рассматривать температуру для определенного значения Х = х/d, то и cos(m1 Х) является функцией Вi ( так как m1 = f (Вi)).
Для оси пластины: Х = х/d = 0 ® cos(m1 0) = 1
Для поверхности: Х = х/d = 1® cos(m1 1) = cosm1.
Тогда для оси пластины произведение D1cos(0) обозначим как некоторую функцию N(Bi):
.
(1)
Для поверхности пластины D1 cosm1 – обозначим через Р(Bi):
.
(2)
Функции N(Bi) и Р(Bi) табулированы и берутся из справочников. Из уравнений (1) и (2) следует, что при заданной координате безразмерная температура является только функцией 2-х безразмерных параметров Bi и Fo.
.
Логарифмируя уравнение (1), получаем
.
(3)
Аналогичное уравнение может быть получено после логарифмирования уравнения (2).
Из уравнения (3) следует, что при заданном значении координаты и при заданном Bi натуральный логарифм безразмерной температуры линейно зависит от времени. Это позволяет представить для уравнений (1) и (2) графическое решение (рис. 14).
Рис. 14 Изменение температурного поля в плоской неограниченной стенке при ее охлаждении
Из уравнения (в) для Q следует: поле температуры имеет вид симметричной кривой косинусоиды с максимумом на оси пластины (Х=0).
Физический смысл: в первые моменты времени перепад температур между серединой пластины и краем максимальный. Это объясняется тем, что сначала охлаждаются наружные слои пластины. Затем начинают остывать слои ближе к центру пластины.
Для каждого последующего момента времени будет своя кривая, монотонно убывающая к поверхностям пластины. Кривизна этих кривых зависит от условий однозначности.
Для бесконечно длинного цилиндрического стержня вывод соотношений для температуры аналогичен рассмотренному выше для плоской стенки.
Охлаждение параллелепипеда
Рассмотрим охлаждение параллелепипеда в среде с постоянной температурой Тж. В начальный момент времени (при t = 0) все точки параллелепипеда имеют одинаковую температуру Т0. Параллелепипед однородный и изотропный (рис. 15).
Найти: распределение температур и среднюю температуру.
Рис. 15 К охлаждению параллелепипеда
Поместим начало координат в центре параллелепипеда. Дифференциальное уравнение теплопроводности:
.
Начальные условия:
При
заданных условиях задача симметрична
относительно центра параллелепипеда.
Введя обозначения,
запишем граничные условия:
а) для наружной поверхности при t > 0:
-
б) в центре параллелепипеда:
.
Параллелепипеды, цилиндры конечных размеров и прямоугольные стержни можно рассматривать как тела, образованные при пересечении соответственно: 3-х взаимно перпендикулярных неограниченных пластин конечной толщины; цилиндра и пластины и 2-х пластин.
Доказано, что решение таких задач представляется произведением безразмерных температур для тел неограниченных размеров, в результате пересечения которых образовалось рассмотренное тело.
Для параллелепипеда решение можно представить как произведение безразмерных температур для трех безграничных пластин:
,
(1)
где
;
;
.
То есть, решение задачи для рассматриваемого тела конечных размеров свелась к решению задачи для безграничной пластины конечной толщины. Уравнение (1) можно представить в виде:
,
где
;
;
;
;
.
Данный метод известен в теории теплопроводности под названием теоремы о перемножении решений. Средняя температура находится аналогично.
Скорость распространения теплоты в телах зависит от отношения поверхности тела к их объему. Чем больше отношение поверхности тела к его объему, тем и скорость протекания процесса будет больше.