
- •Раздел 1. Основные понятия
- •1.1. Общие сведения о сопротивлении материалов
- •1.2. Изучаемые объекты
- •1.3. Расчетные схемы элементов реальных конструкций
- •1.4. Место курса "Сопротивление материалов" в общем цикле дисциплин о механике деформирования упругих тел и образованных из них структур
- •1.5. Нагрузки и их классификация
- •1.6. Внутренние силы
- •1.7. Метод сечений
- •1.8. Основные виды деформаций бруса
- •1.9. Опоры, связи и их классификация
- •1.10. Статически определимые и статически неопределимые балки
- •1.11. Определение реакций в опорных связях
- •1.12. Эпюры внутренних сил и моментов.
- •1.13. Правила построения эпюр внутренних силовых факторов
- •Раздел 2. Теория напряженного состояния
- •2.1. Напряжения
- •2.2. Связь между напряжениями и внутренними усилиями
- •2.3. Виды напряженного состояния
- •2.4. Плоское напряженное состояние
- •2.5. Главные напряжения. Главные площадки
- •2.6. Экстремальные касательные напряжения. Площадки сдвига
- •3.1. Деформации, перемещения
- •3.2. Зависимости между деформациями и перемещениями. Формулы Коши
- •3.3. Основные гипотезы
- •3.4. Кинематические соотношения при изгибе
- •3.5. Экспериментальное изучение механических характеристик материалов при растяжении-сжатии
- •3.6. Испытания материала на растяжение
- •3.7. Определения основных механических характеристик материалов
- •Раздел 5. Уравнения равновесия балки
- •5.1. Уравнения равновесия балки в усилиях
- •5.2. Некоторые особенности эпюр перерезывающих сил и изгибающихмоментов
- •5.3. Уравнения равновесия балки в перемещениях
- •5.4. Ось стержня
- •5.5. Граничные условия
- •5.6. Растяжение и сжатие
- •5.7. Сдвиг. Чистый сдвиг
- •5.8. Деформация при сдвиге. Закон Гука при сдвиге
- •5.9. Кручение
- •Раздел 6. Геометрические характеристики плоских однородных сечений
- •6.1. Cтатический момент инерции сечения
- •6.2. Осевой момент инерции сечения
- •6.5.2. Треугольное сечение
- •6.5.3. Сечение в форме круга
- •6.6. Изменение моментов инерции при параллельном переносе осей
- •6.7. Изменение моментов инерции при повороте осей
- •6.8. Главные моменты инерции. Главные оси инерции
- •6.9. Вычисление моментов инерции сложных сечений
- •Раздел 7. Прямой изгиб
- •7.1. Прямой чистый изгиб
- •7.2. Прямой поперечный изгиб
- •7.3. Формула д.И. Журавского
- •7.4. Расчеты на прочность при изгибе
- •7.5. Балки постоянного поперечного сечения из пластичных материалов
- •7.6. Балки постоянного поперечного сечения из хрупких материалов
- •7.7. Балки переменного поперечного сечения
- •7.8. Определение перемещений в балках постоянного сечения методом непосредственного интегрирования уравнений равновесия
- •7.9. Определение перемещений в балках постоянного сечения методом начальных параметров
- •Раздел 8. Критерии прочности
- •8.1. Основные теории прочности
- •8.1.1. Первая теория прочности, или теория наибольших нормальных напряжений (теория Галилея-Ренкина)
- •8.1.2 Вторая теория прочности, или теория наибольших линейных деформаций (теория Мариотта-Грасгофа, 1862 г.)
- •8.1.3. Третья теория прочности, или теория наибольших касательных напряжений (теория Кулона, 1772 г.)
- •8.1.4. Четвертая (энергетическая) теория прочности, или теория удельной потенциальной энергии формоизменения (Теория Губера-Мизеса-Генки, 1904 г.)
- •8.1.5. Единая теория прочности
- •8.2. Понятия о некоторых новых теориях прочности
- •8.2.1. Критерий прочности Ягна-Бужинского
- •8.2.2. Критерий прочности Писаренко-Лебедева
- •Раздел 9. Сложное сопротивление
- •9.1. Общие положения
- •9.2. Изгиб с кручением брусьев круглого сечения
- •9.3. Эквивалентные напряжения по различным теориям прочности
- •Раздел 10. Расчет конструкций по предельным состояниям
- •10.1. Основные понятия о предельном состоянии
- •10.2. Расчеты при растяжении и сжатии
- •10.3. Расчеты при кручении
- •10.4. Расчеты при изгибе
Раздел 7. Прямой изгиб
В случае центрального растяжения - сжатия и кручения прямых брусьев их оси, первоначально прямые, остаются прямыми и после деформации. В отличие от этих видов деформации изгиб представляет собой такую деформацию, при которой происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев.
Изгиб связан с возникновением в поперечных сечениях бруса изгибающих моментов.
Прямой изгиб возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения.
7.1. Прямой чистый изгиб
Прямой изгиб, при котором в поперечных сечениях бруса возникает только изгибающий момент, называется прямым чистым изгибом.
При прямом чистом изгибе гипотеза плоских сечений является абсолютно точной.
Участок II (рис. 7.1) представляет собой участок чистого изгиба. На этом участке действует только изгибающий момент.
Участок I, на котором действует как поперечная сила, так и изгибающий момент, представляет собой участок поперечного изгиба.
При поперечном изгибе деформации в точке M(рис 7.2), отстоящей от оси стержня (нейтральной оси) на расстоянииyопределяется выражением
.
Рис. 7.1
В соответствии с законом Гука нормальные напряжения при изгибе равны
(7.1).
Из условия равновесия для выделенной части стержня следует
,
или,
подставив выражение для
из (7.1),
,
,
(7.2)
Рис. 7.2.
С учетом (7.2) выражение (7.1) примет следующий вид:
(7.3).
Формула (7.3), определяющая нормальные напряжения в произвольной точке рассматриваемого сечения бруса, применима при условии, что плоскость действия изгибающего момента проходит через одну из главных осей инерции этого сечения или ей параллельна. При этом нейтральная ось поперечного сечения является его главной центральной осью инерции, перпендикулярной к плоскости действия изгибающего момента.
Определим максимальные по абсолютной величине нормальные напряжения в поперечном сечении:
,
где
- расстояние от нейтральной оси до
наиболее удаленной точки
сечения.
Величина
,
зависящая только от размеров и формы
поперечного сечения, называется
осевым моментом сопротивления сечения
и обозначается
:
(7.4).
Таким образом, максимальные по абсолютной величине нормальные напряжения в сечении вычисляются по формуле
(7.5).
7.2. Прямой поперечный изгиб
При поперечном изгибе в поперечном сечении бруса, кроме изгибающего момента, действует также поперечная сила.
Если поперечный изгиб является прямым, то изгибающий момент действует в плоскости, совпадающей с одной из главных плоскостей бруса.
Экспериментальные и теоретические исследования показывают, что формулы, полученные для случая прямого чистого изгиба, применимы и при прямом поперечном изгибе.
Поперечная сила, действующая в сечении бруса, связана с касательными напряжениями, возникающими в этом сечении, зависимостью
,
где
- составляющая касательного напряжения
в поперечном сечении, параллельная
осиyи силеQ.