
- •Краткое содержание
- •Предисловие
- •1. Статус настоящего документа
- •2. Мандат на подготовку настоящего документа
- •3. Значимые нормативно-правовые положения Директивы КПКЗ и определение НДТ
- •4. Цель настоящего документа
- •5. Источники информации
- •6. Как использовать настоящий документ
- •Область применения
- •1. Введение и определения
- •1.1. Введение
- •1.1.1. Энергия в промышленном секторе ЕС
- •1.1.2. Воздействия энергопотребления на окружающую среду и экономику
- •1.1.3. Вклад энергоэффективности в сокращение эффектов глобального потепления и повышение устойчивости
- •1.1.4. Энергоэффективность и Директива КПКЗ
- •1.1.5. Место энергоэффективности в системе комплексного предотвращения и контроля загрязнения
- •1.1.6. Экономические аспекты и вопросы воздействия на различные компоненты окружающей среды
- •1.2. Понятие энергии и законы термодинамики
- •1.2.1. Энергия, теплота, мощность и работа
- •1.2.2. Законы термодинамики
- •1.2.2.1. Первый закон термодинамики: сохранение энергии
- •1.2.2.2. Второй закон термодинамики: рост энтропии
- •1.2.2.3. Баланс эксергии: сочетание первого и второго законов
- •1.2.2.4. Диаграммы свойств
- •1.2.2.5. Дальнейшая информация
- •1.2.2.6. Необратимость и ее источники
- •1.3. Определения показателей энергоэффективности и повышения энергоэффективности
- •1.3.1. Вопросы энергоэффективности и ее оценки в Директиве IPPC
- •1.3.2. Эффективное и неэффективное использование энергии
- •1.3.3 Показатели энергоэффективности
- •1.3.4. Практическое применение показателей
- •1.3.5. Значимость систем и границ систем
- •1.3.6. Другие используемые термины
- •1.3.6.1. Первичная энергия, вторичная энергия и конечная энергия
- •1.3.6.2. Теплота сгорания топлива и КПД
- •1.3.6.3. Меры по повышению энергоэффективности на стороне производителя и стороне потребителя
- •1.4. Показатели энергоэффективности в промышленности
- •1.4.1. Введение: определение показателей и других параметров
- •1.4.2. Энергоэффективность производственных единиц
- •1.4.2.1. Пример 1. Простой случай
- •1.4.2.2. Пример 2. Типичный случай
- •1.4.3. Энергоэффективность предприятия
- •1.5. Вопросы, которые должны быть рассмотрены при определении показателей энергоэффективности
- •1.5.1. Определение границ системы
- •1.5.1.1.Выводы относительно систем и границ систем
- •1.5.2. Другие существенные вопросы, заслуживающие рассмотрения на уровне установки
- •1.5.2.1. Документирование используемых подходов к отчетности
- •1.5.2.2. Внутреннее производство и потребление энергии
- •1.5.2.3. Утилизация энергии отходов и газа, сжигаемого в факелах
- •1.5.2.4. Эффект масштаба (снижение УЭП с ростом объемов производства)
- •1.5.2.5. Изменения в производственных методах и характеристиках продукции
- •1.5.2.6. Интеграция энергосистем
- •1.5.2.7. Неэффективное использование энергии из соображений устойчивого развития и/или повышения энергоэффективности предприятия в целом
- •1.5.2.8. Отопление и охлаждение помещений
- •1.5.2.9. Региональные факторы
- •1.5.2.10. Явная теплота
- •1.5.2.11. Дальнейшие примеры
- •2. Технологии, которые следует рассматривать для обеспечения энергоэффективности на уровне установки
- •2.1. Системы менеджмента энергоэффективности (СМЭЭ)
- •2.2. Планирование и определение целей и задач
- •2.2.1. Постоянное улучшение экологической результативности и вопросы воздействия на различные компоненты окружающей среды
- •2.2.2. Системный подход к менеджменту энергоэффективности
- •2.3. Энергоэффективное проектирование (ЭЭП)
- •2.3.1. Выбор технологии производственного процесса
- •2.4. Повышение степени интеграции процессов
- •2.5. Обеспечение дальнейшего развития инициатив в области энергоэффективности и поддержание мотивации
- •2.6. Поддержание и повышение квалификации персонала
- •2.7. Информационный обмен
- •2.7.1. Диаграммы Сэнки
- •2.8. Эффективный контроль технологических процессов
- •2.8.1. Автоматизированные системы управления технологическими процессами
- •2.8.2. Менеджмент (контроль, обеспечение) качества
- •2.9. Техническое обслуживание
- •2.10. Мониторинг и измерения
- •2.10.1. Косвенные методы мониторинга
- •2.10.2. Оценки и расчеты
- •2.10.3. Учет потребления энергоресурсов и усовершенствованные системы учета
- •2.10.4. Снижение потери давления при измерении расходов в трубопроводах
- •2.11. Энергоаудиты и энергетическая диагностика
- •2.12. Пинч-анализ
- •2.13. Энтальпийный и эксергетический анализ
- •2.14. Термоэкономика
- •2.15. Энергетические модели
- •2.15.1. Энергетические модели, базы данных и балансы
- •2.15.2. Оптимизация использования энергоресурсов и управление ими на основе моделей
- •2.16. Сравнительный анализ
- •2.17. Прочие инструменты
- •3. Технологии, которые следует рассматривать для обеспечения энергоэффективности на уровне энергопотребляющих систем, процессов и видов деятельности
- •3.1. Сжигание
- •3.1.1. Снижение температуры дымовых газов
- •3.1.1.1. Установка подогревателя воздуха или воды
- •3.1.2. Рекуперативные и регенеративные горелки
- •3.1.3. Сокращение массового расхода дымовых газов за счет снижения избытка воздуха горения
- •3.1.4. Автоматизированное управление горелками
- •3.1.5. Выбор топлива
- •3.1.6. Кислородное сжигание
- •3.1.7. Сокращение потерь тепла при помощи теплоизоляции
- •3.1.8. Сокращение потерь тепла через отверстия печей
- •3.2. Паровые системы
- •3.2.1. Общие свойства пара
- •3.2.2. Обзор методов повышения энергоэффективности паровых систем
- •3.2.3. Дросселирование и использование турбодетандеров
- •3.2.4. Методы эксплуатации и управления технологическим процессом
- •3.2.5. Предварительный подогрев питательной воды (в т.ч. с помощью экономайзера)
- •3.2.6. Предотвращение образования и удаление накипи с поверхностей теплообмена
- •3.2.7. Оптимизация продувки котла
- •3.2.8. Оптимизация расхода пара в деаэраторе
- •3.2.9. Оптимизация работы котла короткими циклами
- •3.2.10. Оптимизация парораспределительных систем
- •3.2.11. Теплоизоляция паропроводов и конденсатопроводов
- •3.2.11.1. Использование съемных панелей для теплоизоляции клапанов и фитингов
- •3.2.12. Реализация программы контроля состояния конденсатоотводчиков и их ремонта
- •3.2.13. Сбор и возврат конденсата в котел
- •3.2.14. Использование самоиспарения
- •3.2.15. Утилизация энергии продувочной воды котла
- •3.3. Утилизация тепла и охлаждение
- •3.3.1. Теплообменники
- •3.3.1.1. Мониторинг состояния и техническое обслуживание теплообменников
- •3.3.2. Тепловые насосы (в т.ч. механическая рекомпрессия пара)
- •3.3.3. Системы охлаждения и холодильные установки
- •3.4. Когенерация
- •3.4.1. Различные методы когенерации
- •3.4.2. Тригенерация
- •3.4.3. Централизованное холодоснабжение
- •3.5. Электроснабжение
- •3.5.1. Компенсация реактивной мощности
- •3.5.2. Гармоники
- •3.5.3. Оптимизация систем электроснабжения
- •3.5.4. Энергоэффективная эксплуатация трансформаторов
- •3.6. Подсистемы с электроприводом
- •3.6.1. Энергоэффективные двигатели
- •3.6.2. Выбор оптимальной номинальной мощности двигателя
- •3.6.3. Приводы с переменной скоростью
- •3.6.4. Потери при передаче механической энергии
- •3.6.5. Ремонт двигателей
- •3.6.6. Перемотка
- •3.6.7. Экологические преимущества, воздействие на различные компоненты окружающей среды, применимость и другие соображения относительно методов повышения энергоэффективности систем с электроприводом
- •3.7. Системы сжатого воздуха
- •3.7.1. Оптимизация общего устройства системы
- •3.7.2. Использование приводов с переменной скоростью
- •3.7.3. Высокоэффективные электродвигатели
- •3.7.4. Централизованная система управления системой сжатого воздуха
- •3.7.5. Утилизация тепла
- •3.7.6. Сокращение утечек в системах сжатого воздуха
- •3.7.7. Техническое обслуживание фильтров
- •3.7.8. Использование холодного наружного воздуха для питания компрессоров
- •3.7.9. Оптимизация давления системы
- •3.7.10. Создание запаса сжатого воздуха вблизи потребителей с существенно варьирующим уровнем потребления
- •3.8. Насосные системы
- •3.8.1. Инвентаризация и оценка насосных систем
- •3.8.2. Выбор насоса
- •3.8.3. Оптимизация трубопроводной системы
- •3.8.4. Техническое обслуживание
- •3.8.5. Управление насосными системами и их регулирование
- •3.8.6. Привод и передача
- •3.8.7. Экологические преимущества, воздействие на различные компоненты окружающей среды, применимость и другие соображения относительно методов повышения энергоэффективности насосных систем
- •3.9. Системы отопления, вентиляции и кондиционирования воздуха (ОВКВ)
- •3.9.1. Отопление и охлаждение помещений
- •3.9.2. Вентиляция
- •3.9.2.1. Оптимизация проектных решений при внедрении новой или модернизации существующей системы вентиляции
- •3.9.2.2. Повышение эффективности существующей вентиляционной системы
- •3.9.3. Естественное охлаждение
- •3.10. Освещение
- •3.11. Процессы сушки, сепарации и концентрирования
- •3.11.1. Выбор оптимальной технологии или сочетания технологий
- •3.11.2. Механические процессы
- •3.11.3. Методы термической сушки
- •3.11.3.1. Расчет энергозатрат и КПД
- •3.11.3.2. Конвективная сушка
- •3.11.3.3. Контактная сушка
- •3.11.3.4. Перегретый пар
- •3.11.3.5. Утилизация тепла в процессах сушки
- •3.11.3.6. Выпаривание в сочетании с механической рекомпрессией пара или тепловым насосом
- •3.11.3.7. Оптимизация теплоизоляции сушильных систем
- •3.11.4. Радиационная сушка
- •3.11.5. Системы автоматизированного управления процессами термической сушки
- •4. Наилучшие доступные технологии
- •4.1. Введение
- •4.2. Наилучшие доступные технологии обеспечения энергоэффективности на уровне установки
- •4.2.1. Менеджмент энергоэффективности
- •4.2.2. Планирование и определение целей и задач
- •4.2.2.1. Постоянное улучшение экологической результативности
- •4.2.2.2. Выявление аспектов энергоэффективности установки и возможностей для энергосбережение
- •4.2.2.3. Системный подход к менеджменту энергоэффективности
- •4.2.2.4. Установление и пересмотр целей и показателей в области энергоэффективности
- •4.2.2.5. Сравнительный анализ
- •4.2.3. Энергоэффективное проектирование (ЭЭП)
- •4.2.4. Повышение степени интеграции технологических процессов
- •4.2.5. Поддержание поступательного развития инициатив в области энергоэффективности
- •4.2.6. Поддержание уровня квалификации персонала
- •4.2.7. Эффективный контроль технологических процессов
- •4.2.8. Техническое обслуживание
- •4.2.9. Мониоринг и измерения
- •4.3. Наилучшие доступные технологии обеспечения энергоэффективности энергопотребляющих систем, технологических процессов, видов деятельности и оборудования
- •4.3.1. Сжигание
- •4.3.2. Паровые системы
- •4.3.3. Утилизация тепла
- •4.3.4. Когенерация
- •4.3.5. Электроснабжение
- •4.3.6. Подсистемы с электроприводом
- •4.3.7. Системы сжатого воздуха
- •4.3.8. Насосные системы
- •4.3.9. Системы отопления, вентиляции и кондиционирования воздуха (ОВКВ)
- •4.3.10. Освещение
- •4.3.11. Процессы сушки, сепарации и концентрирования
- •5. Новые технологии обеспечения энергоэффективности
- •5.1. Беспламенное сжигание (беспламенное окисление)
- •5.2. Сжатый воздух как средство хранения энергии
- •6. Заключительные замечания
- •6.1. Временные рамки и основные этапы подготовки настоящего документа
- •6.2. Источники информации
- •6.3. Степень консенсуса
- •6.4. Пробелы и дублирование информации. Рекомендации по дальнейшему сбору информации и исследованиям
- •6.4.1. Пробелы и дублирование информации
- •6.4.3. Конкретная производственная информация
- •6.4.3. Направления дальнейших исследований и практической деятельности
- •6.5. Пересмотр настоящего документа
- •Источники
- •Глоссарий
- •7. Приложения
- •7.1. Энергия и законы термодинамики
- •7.1.1. Общие принципы
- •7.1.1.1. Описание систем и процессов
- •7.1.1.2. Формы энергии и способы ее передачи
- •7.1.2. Первый и второй законы термодинамики
- •7.1.2.1. Первый закон термодинамики: баланс энергии
- •7.1.2.2. Второй закон термодинамики: энтропия
- •7.1.2.2.2. Баланс энтропии для закрытой системы
- •7.1.2.3. Баланс энтропии для открытой системы
- •7.1.2.4. Анализ эксергии
- •7.1.3. Диаграммы свойств, таблицы свойств, базы данных и программы
- •7.1.3.1. Диаграммы свойств
- •7.1.3.2. Таблицы свойств, базы данных и программное моделирование
- •7.1.3.3. Источники неэффективности
- •7.1.4. Использованные обозначения
- •7.1.4.1. Библиография
- •7.2. Примеры термодинамической необратимости
- •7.2.1. Пример 1. Дросселирование
- •7.2.2. Пример 2. Теплообменники
- •7.2.3. Пример 3. Процессы перемешивания
- •7.3. Примеры анализа энергоэффективности производства
- •7.3.1. Производство этилена методом парового крекинга
- •7.3.2. Производство мономера винилацетата (МВА)
- •7.3.3. Горячая прокатка стали
- •7.4. Примеры внедрения систем менеджмента энергоэффективности
- •7.5. Примеры энергоэффективных технологических процессов
- •7.6. Пример подхода к поступательному развитию инициатив в сфере энергоэффективности: «совершенство в производственной деятельности»
- •7.7. Мониторинг и измерения
- •7.7.1. Количественные измерения
- •7.7.2. Оптимизация использования энергоресурсов
- •7.7.3. Энергетические модели, базы данных и балансы
- •7.8. Другие инструменты аудита и поддержки мероприятий по повышению энергоэффективности на уровне предприятия
- •7.8.1. Инструменты аудита и менеджмента энергоэффективности
- •7.9. Сравнительный анализ
- •7.9.1. Нефтеперерабатывающие заводы
- •7.9.2. Австрийское энергетическое агентство
- •7.9.3. Схема для норвежских МСП
- •7.9.4. Соглашения о сравнительном анализе в Нидерландах
- •7.9.5. Сравнительный анализ в стекольной промышленности
- •7.9.6. Распределение энергозатрат и выбросов CO2 между различными видами продукции в сложном последовательном процессе
- •7.10. Примеры к главе 3
- •7.10.1. Паровые системы
- •7.10.2. Утилизация отходящего тепла
- •7.11. Мероприятия на стороне потребителя
- •7.12. Энергосервисные компании
- •7.13. Сайт Европейской комиссии, посвященный вопросам энергоэффективности и Национальные планы действий государств-членов
- •7.14. Европейская схема торговли квотами (ETS)
- •7.15. Оптимизация транспортных систем
- •7.15.1. Энергоаудит транспортных систем
- •7.15.2. Менеджмент энергоэффективности автомобильного транспорта
- •7.15.3. Улучшение упаковки с целью оптимизации использования транспорта
- •7.16. Европейский топливный баланс
- •7.17. Коррекция коэффициента мощности при электроснабжении
3.2.13. Сбор и возврат конденсата в котел
Общая характеристика
При передаче тепла производственному процессу при помощи теплообменника пар отдает скрытую теплоту (теплоту конденсации) и конденсируется, образуя горячую воду. Эта вода теряется или (что является обычной практикой) собирается и возвращается в котел. Повторное использование конденсата преследует четыре цели:
•использование тепловой энергии, содержащейся в горячем конденсате;
•снижение затрат на получение сырой подпиточной воды;
•снижение затрат на подготовку сырой воды;
•снижение затрат, связанных со сбросом сточных вод (там, где это применимо).
Конденсат собирается при атмосферном или отрицательном давлении. При этом источником конденсата может быть пар с гораздо более высоким давлением.
Экологические преимущества
При снижении давления до атмосферного часть конденсата может вновь самопроизвольно испаряться, образуя выпар. Последний также может быть собран и использован повторно (см.
раздел 3.2.14).
Возврат конденсата приводит также к сокращению расхода химических веществ на водоподготовку. Сокращаются и объемы потребляемых и сбрасываемых вод также.
Воздействие на различные компоненты окружающей среды
Данных не предоставлено.
Производственная информация
В случае отрицательного давления необходима деаэрация конденсата.
Применимость
Данный метод неприменим в случаях, когда собранный конденсат загрязнен, или когда сбор конденсата невозможен в силу того, что сам пар используется в технологическом процессе.
При проектировании новых установок рекомендуемым подходом является разделение конденсата на потенциально загрязняемый и незагрязненный (чистый) потоки. Чистый конденсат поступает из источников, где загрязнение в принципе невозможно (например, из ребойлеров, рабочее давление которых выше давления технологического процесса, так что в случае утечки пар попадает наружу, а не компоненты процесса – внутрь). Потенциально загрязняемый конденсат может быть загрязнен в случае нештатной ситуации (например, разрыва трубы ребойлера в условиях, когда его рабочее давление ниже, чем давление технологического процесса). Сбор и возврат чистого конденсата не требует дополнительных мер предосторожности. Возврат потенциально загрязняемого конденсата возможен при отсутствии загрязнения (вызванного, например, утечкой в ребойлере), которое отслеживается в реальном времени при помощи датчиков, например, датчика общего органического углерода.
Экономические аспекты
Возврат конденсата связан со значительными преимуществами и должен рассматриваться во всех ситуациях, где он в принципе применим (см. «Применимость» выше), за исключением случаев, когда объем потенциально возвращаемого конденсата низок (например, когда пар расходуется в технологическом процессе).
Мотивы внедрения
Данных не предоставлено.
Примеры
Применяется практически повсеместно.
175
Справочная информация
[29, Maes, 2005], [16, CIPEC, 2002]
3.2.14. Использование самоиспарения
Общая характеристика
Самоиспарение происходит, когда конденсат, находящийся под высоким давлением, попадает в область низкого давления.
Утилизация энергии самоиспарения может быть достигнута посредством теплообмена с подпиточной водой котла. Если при продувке котла для снижения давления воды используется расширительный бак, при этом также образуется пар низкого давления. Это пар не содержит растворенных солей, а его энергия составляет значительную часть тепловой энергии продувочной воды. Поэтому пар может быть направлен непосредственно в деаэратор, где он смешается с сырой подпиточной водой.
Следует, однако, иметь в виду, что пар занимает гораздо больший объем, чем конденсат. Устройство возвратных труб должно обеспечивать прием выпара без значительного повышения давления в системе. В противном случае возникшее противодавление может нарушить функционирование конденсатоотводчиков и других устройств выше по паропроводу.
В пределах котельной пар, так же, как и конденсат, может использоваться для подогрева питательной воды в деаэраторе. Другим вариантом является использование энергии пара для предварительного подогрева воздуха горения.
За пределами котельной пар может использоваться для подогрева различных компонентов до температур ниже 100°C. Существуют системы, использующие пар под давлением 1 бар (м), и выпар может быть направлен в эти системы. Выпар может использоваться и для других целей, в частности, для предварительного подогрева воздуха в различных технологических процессах.
Как правило, потребности технологических процессов в паре низкого давления удовлетворяются за счет дросселирования пара высокого давления. Однако часть этих потребностей может быть удовлетворена с незначительными затратами за счет выпаривания конденсата высокого давления. Выпаривание является особенно привлекательным вариантом в тех случаях, когда возврат конденсата высокого давления в котел нецелесообразен с экономической точки зрения.
Экологические преимущества
Зависят от конкретных условий.
При давлении 1 бар температура конденсата равна 100°C, а энтальпия – 419 кДж/кг. Общее количество энергии, которая может быть получена при утилизации энергии пара, зависит от рабочей мощности установки. Количество тепловой энергии, покидающей паровую систему с конденсатом, представлено в табл. 3.16. В той же таблице приведено относительное содержание энергии в конденсате и паре. При высоком давлении пар содержит большую часть энергии.
176

|
В конденсате при |
В конденсате и |
Относительная доля |
|
Абсолютное |
энергии конденсата и |
|||
атмосферном давлении, |
образовавшемся паре |
|||
давление, бар |
% |
при давлении котла, % |
пара, содержащаяся в |
|
|
|
|
паре, % |
|
1 |
13,6 |
13,6 |
0,0 |
|
|
|
|
|
|
2 |
13,4 |
16,7 |
19,9 |
|
|
|
|
|
|
3 |
13,3 |
18,7 |
28,9 |
|
|
|
|
|
|
5 |
13,2 |
21,5 |
38,6 |
|
|
|
|
|
|
8 |
13,1 |
24,3 |
46,2 |
|
|
|
|
|
|
10 |
13,0 |
25,8 |
49,4 |
|
|
|
|
|
|
15 |
13,0 |
28,7 |
54,7 |
|
|
|
|
|
|
20 |
12,9 |
30,9 |
58,2 |
|
|
|
|
|
|
25 |
12,9 |
32,8 |
60,6 |
|
|
|
|
|
|
40 |
12,9 |
37,4 |
65,4 |
|
|
|
|
|
Примечание: Во многих случаях питательная вода, используемая установкой, имеет среднегодовую температуру около 15°C. Приводимые в таблице величины получены в предположении, что свежая вода, потребляемая установкой, имеет температуру 15°C (энтальпия – 63 кДж/кг)
Таблица 3.16: Доля общей энергии, приходящаяся на конденсат при атмосферном давлении и выпар
[29, Maes, 2005]
Воздействие на различные компоненты окружающей среды
В результате получения выпара из конденсата высокого давления температура конденсата, возвращаемого в котел, (и содержание в нем тепловой энергии) снижаются. Если вода, поступающая в котел, подогревается в экономайзере, снижение ее температуры является благоприятным фактором, поскольку это позволяет более полно утилизировать энергию дымовых газов и, в конечном счете, повысить КПД котла. Такое сочетание методов утилизации обеспечивает наибольшую энергоэффективность. Однако предприятие должно найти применение полученному пару низкого давления, принимая во внимание тот факт, что такой пар из любых источников может подаваться лишь на ограниченные расстояния. На многих предприятиях (например, нефтеперерабатывающих и химических) существует избыток пара низкого давления, и найти применение выпару часто бывает затруднительно. В такой ситуации наилучшим вариантом является возврат конденсата в деаэратор, поскольку стравливание выпара в атмосферу представляло бы собой непроизводительное использование энергии. Во избежание проблем, связанных с конденсатом, может быть организован локальный сбор конденсата в пределах конкретной производственной единицы или линии, когда собранный конденсат возвращается в деаэратор.
Выбор оптимального варианта зависит от экономической эффективности затрат на установку необходимых трубопроводов и другого оборудования (см. раздел 1.1.6).
Производственная информация
Повторное использование выпара возможно во многих случаях. В частности, он может использоваться для нагрева до температуры ниже 100°C; возможны и другие варианты.
Сбор выпара в конденсатопровод. За время функционирования установки к существующим трубопроводам могут добавляться дополнительные компоненты, и размер конденсатопроводов может оказаться недостаточным для приема всего возвратного конденсата. В большинстве случаев возвращаемый конденсат имеет атмосферное давление, что означает, что значительная часть трубопровода заполнена выпаром. Если количество возвращаемого конденсата увеличивается, давление в трубах может подняться выше 1 бар (м). Это может привести к
177
проблемам выше по трубопроводу, нарушить функционирование конденсатоотводчиков и других устройств, и т.п.
Выпар может отводиться в специальный резервуар, установленный в подходящем месте конденсатопровода. Затем выпар может использоваться для локального предварительного подогрева или нагрева до температуры менее 100°C. Одновременно это позволит вернуть давление в конденсатопроводе к проектным значениям, избежав необходимости модернизации конденсатопровода.
При анализе существующей системы одним из вариантов, заслуживающих рассмотрения, является возврат конденсата при пониженном давлении. Это приведет к образованию большего количества выпара; температура при этом снизится до уровня ниже 100°C.
При использовании выпара, например, для нагрева до температуры ниже 100°C, возможна ситуация, когда реальное давление в змеевике теплообменника после того, как пар отдаст часть энергии, снизится до уровня ниже 1 бар. Это может привести к подсосу конденсата в змеевик и затоплению последнего. Этой ситуации можно избежать, организовав возврат конденсата при пониженном давлении. При этом образуется больше выпара, которому передается больше энергии конденсата. В такой ситауции компоненты, в которых используется энергия выпара, могут быть объединены в отдельную сеть. Однако при этом понадобится установка дополнительных насосов для поддержания пониженного давления и удаления воздуха, подсасываемого в трубы из атмосферы.
Применимость
Данный метод применим в условиях, когда на предприятии имеется паровая сеть с давлением более низким, чем давление, при котором пар производится в котле. Кроме того, выпаривание продувочных вод котла может быть более эффективным с точки зрения эксергии, чем простая утилизация тепла продувочных вод с помощью теплообменника.
Теоретически выпар может применяться вместо пара, произведенного в котле, в любой ситуации, где существует потребность в тепловой энергии при невысоких температурах. На производстве может существовать целый ряд возможных применений, заслуживающих тщательного исследования, хотя практическая реализация этих возможностей может быть сопряжена с трудностями. В частности, выпар широко применяется в нефтехимической промышленности.
См. примеры в приложении 7.10.1.
Мотивы внедрения
•снижение затрат;
•наличие применений для пара низкого давления.
Примеры
Данных не предоставлено.
Справочная информация
[29, Maes, 2005, 123, US_DOE]
3.2.15. Утилизация энергии продувочной воды котла
Общая характеристика
Энергия продувочной воды котла может использоваться для предварительного подогрева питательной воды при помощи теплообменника. Рассмотрение возможности утилизации тепла продувочной воды целесообразно для любого котла, где величина непрерывной продувки превышает 4% массового расхода производимого пара. значительные объемы энергосбережения достигаются в случае котлов высокого давления.
Альтернативным вариантом утилизации энергии продувочной воды является выпаривание последней при среднем или низком давлении (см. раздел 3.2.14).
178