
- •«Национальный исследовательский
- •I. Основы АнАлоговой электроники
- •1. Задачи, решаемые электронной техникой, и элементы, необходимые для их решения
- •1.1. Электрические сигналы. Временное и спектральное представление
- •1.2. Усиление электрических сигналов
- •1.3. Модуляция сигналов
- •1.3.1. Амплитудная модуляция
- •1.3.2. Импульсно-кодовая модуляция
- •1.3.3. Широтно-импульсная модуляция
- •А б Рис. 1.19. Компаратор: а – схема; б – временные диаграммы при шим1.4. Фильтрация сигналов
- •1.5. Хранение и отображение информации
- •1.6. Преобразование электрической энергии
- •Контрольные вопросы и задания
- •Основные результаты первой главы
- •2. Математический аппарат описания электронных элементов
- •2.1. Описание нелинейных элементов
- •2.2. Линеаризация нелинейных уравнений
- •2.3. Частотный анализ линеаризованных цепей
- •2.4. Временной анализ линеаризованных цепей
- •Контрольные вопросы и задания
- •Основные результаты второй главы
- •3. Полупроводники – основа современной элементной базы электроники
- •3.1. Преимущества полупроводниковых элементов перед электровакуумными
- •3.2. Физические основы электропроводности полупроводников
- •3.3. Электропроводность беспримесного (собственного) полупроводника
- •3.4. Электропроводность примесных полупроводников
- •3.4.1. Донорная примесь
- •3.4.2. Акцепторная примесь
- •3.6. Инерционностьp-n-перехода
- •3.6.1. Зарядная емкостьp-n-перехода
- •3.6.2. Диффузионная емкость
- •3.7. Пробой p-n-перехода
- •3.7.1. Тепловой пробой
- •3.7.2. Электрический пробой
- •3.8. Математическая модельp-n-перехода
- •3.9. Переходметалл – полупроводник
- •Контрольные вопросы и задания
- •Основные результаты третьей главы
- •4. Многопереходные электронные элементы
- •4.1. Полупроводниковые триоды (биполярные транзисторы)
- •4.2. Активный режим работы биполярного транзистора
- •4.3. Статические характеристики биполярного транзистора для активного режима
- •4.4. Инерционность биполярного транзистора
- •4.5. Пробой коллекторного перехода
- •4.7. Нелинейная модель биполярного транзистора
- •4.8. Линеаризованная модель биполярного транзистора
- •4.9. Ключевой режим биполярного транзистора
- •4.10. Полевые транзисторы
- •4.11. Полевые транзисторы с управляющимp-n-переходом
- •4.12. Полевые транзисторы с изолированным затвором
- •4.13. Ключевой режим работы полевых транзисторов
- •4.14. Тиристоры
- •4.15. Элементы оптоэлектроники
- •4.15.1. Управляемые источники излучения
- •4.15.2. Фотоприемники
- •Контрольные вопросы и задания
- •Основные результаты четвертой главы
- •5. Основы теории электронных усилителей
- •5.1. Общие положения
- •Контрольные вопросы и задания
- •5.2. Обратная связь в усилительных устройствах
- •5.2.1. Влияние обратной связи на коэффициент усиления.
- •5.2.2. Влияние обратной связи на нестабильность усилителя
- •5.2.3. Влияние обратной связи на нелинейные искажения и шумы усилителя
- •5.2.4. Влияние обратной связи на входное и выходное сопротивления усилителя
- •5.2.5. Устойчивость усилителей с обратной связью
- •5.2.6. Коррекция частотных характеристик для обеспечения устойчивости усилителя
- •Контрольные вопросы и задания
- •5.3. Принципы построения усилительных каскадов
- •5.3.1. Цепи задания и стабилизации режима покоя
- •5.3.2. Элементы связи усилительных устройств
- •К Рис. 5.34. Оптическая связь онтрольные вопросы и задания
- •5.4. Операционные усилители
- •5.4.1. Модели оу
- •5.4.2. Масштабирующий инвертирующий усилитель
- •5.4.3. Масштабирующий неинвертирующий усилитель
- •5.4.4. Суммирующий усилитель
- •5.4.5. Вычитающий усилитель
- •5.4.6. Интегрирующий усилитель
- •5.4.7. Нелинейные функциональные преобразователи сигналов
- •Контрольные вопросы и задания
- •5.5. Усилители мощности
- •5.5.1. Линейные усилители мощности
- •5.5.2. Усилители мощности ключевого типа
- •Контрольные вопросы и задания
- •Основные результаты пятой главы
- •6. Автогенераторы
- •Основные результаты шестой главы
- •7. Источники вторичного электропитания электронных устройств
- •7.1. Классическая схема вторичного источника (без преобразования частоты сети)
- •7.2. Функциональные элементы вторичных источников электропитания
- •7.2.1. Преобразователи переменного напряжения
- •7.2.2. Стабилизаторы постоянного напряжения
- •7.3. Вторичные источники с преобразованием частоты сети
- •Vd Схема упр.
- •Vd Схема упр. Ul
- •Контрольные вопросы и задания
- •Основные результаты седьмой главы
- •II. Основы цифровой электроники
- •1. Введение
- •2. Логические функции
- •2.1. Логические функции и способы их представления
- •2.2. Основы алгебры логики
- •2.2.1. Функция не
- •2.2.2. Функция или
- •2.2.3. Функция и
- •2.3. Логические элементы и-не, или-не
- •2.3.1. Элемент и-не (штрих Шеффера)
- •2.3.2. Элемент или-не (стрелка Пирса)
- •2.4. Синтез логических устройств
- •2.5. Выбор системы логических элементов
- •2.6. Минимизация логических функций
- •Контрольные вопросы и задания
- •3. Характеристики и параметры логических элементов, основы схемотехники
- •3.1. Логические уровни, нагрузочная способность
- •3.2. Логические элементы с тремя состояниями
- •3.3. Быстродействие логических элементов
- •3.4. Помехоустойчивость логических элементов
- •3.5. Число входов логических элементов
- •3.6. Специальные типы логических элементов. Логические элементы с открытым коллектором
- •3.6.1. Расширители числа входов
- •3.6.2. Схема согласования уровней
- •3.6.3. Логический элемент с разрешением по входу
- •Контрольные вопросы и задания
- •4. Цифровые устройства комбинационного типа
- •4.1. Преобразователи кодов, шифраторы, дешифраторы
- •4.2. Мультиплексоры
- •4.3. Сумматоры
- •4.4. Цифровые компараторы
- •Контрольные вопросы и задания
- •5. Последовательностные цифровые устройства
- •5.1. Триггеры
- •5.1.5. Триггер Шмитта
- •5.2. Цифровые счетчики импульсов и делители частоты следования
- •5.2.1. Двоичные счетчики
- •5.2.2. Недвоичные счетчики
- •5.3. Регистры
- •Контрольные вопросы и задания
- •6. Генераторы импульСныхСигналов
- •6.1. Автогенераторы прямоугольных импульсов (мультивибраторы)
- •6.2. Ждущий (заторможенный) режим генераторов
- •6.3. Интегральные таймеры
- •6.4. Генераторы линейно изменяющегося напряжения (тока)
- •Контрольные вопросы и задания
- •7. УстройствасОпРяжЕнияцифровых и аналоговых систем
- •7.1. Цифроаналоговые преобразователи
- •7.2. Аналого-цифровые преобразователи
- •7.2.1. Ацп последовательного приближения
- •7.2.2. Ацп параллельного типа
- •7.2.3. Ацп интегрирующего типа
- •Контрольные вопросы и задания
- •8. Введение в микропроцессорную технику
- •8.1. Арифметическо-логические устройства
- •8.2. Полупроводниковые запоминающие устройства
- •8.3. Программируемые логические интегральные матрицы
- •8.4. Интерфейсные устройства
- •Контрольные вопросы и задания
- •Приложение справочные данные интегральных схем
- •Литература
- •Оглавление
2.3.1. Элемент и-не (штрих Шеффера)
Алгебраическая форма: |
|
Таблица истинности для двух переменных: |
|
Условное графическое изображение: |
|
Функция И-НЕ принимает значение 1 при нулевом значении хотя бы одного аргумента.
2.3.2. Элемент или-не (стрелка Пирса)
Алгебраическая форма: |
|
Таблица истинности: |
|
Условное графическое изображение: |
|
Функция ИЛИ-НЕ принимает значение 0, если хотя бы один аргумент принимает значение 1.
Элементы И-НЕ,
ИЛИ-НЕ называются функционально-полными,
т. к. на основе базиса
каждого из них можно выполнить любую
элементарную логическую функцию: НЕ,
И, ИЛИ. Покажем это на примере элемента
И-НЕ. С учетом правила логического
умножения операцию НЕ можно представить
в виде
или
.Таким образом, получаем схемы инверторов
в базисе И-НЕ (рис. 2.8).
Рис. 2.8. Схемы инверторов в базисе И-НЕ
Применяя последовательно операции двоичного отрицания и теоремы де Моргана, можно операцию ИЛИ представить в виде
,
отсюда получаем элемент ИЛИ в базисе И-НЕ (рис. 2.9).
Рис. 2.9. Элемент ИЛИ в базисе И-НЕ
На
основе правила двоичного отрицания
имеем
и соответственно элемент И в базисе
И-НЕ (рис. 2.10).
Рис. 2.10. Элемент И в базисе И-НЕ
2.4. Синтез логических устройств
Под синтезом логических устройств понимается переход от логической функции, заданной любым способом, к электрической схеме, реализующей эту функцию.
Если
исходная логическая функция задана в
виде таблицы, то синтез начинается с
алгебраической записи функции, которая
может быть представлена в двух вариантах
– совершенной нормальной дизъюнктивнойформе (СДНФ) или совершеннойконъюнктивнойнормальной форме (СКНФ).
Получение СДНФ
покажем на примере некоторой логической
функции трех переменных, заданной
таблицей истинности (табл. 2.1). Для каждого
набора переменных, где функция принимает
значение 1, в данном случае это наборы
№ 1, 3, 5, 7, записывается логическое
произведение аргументов (минтерм),
причем если аргумент имеет значение 0,
то в произведении берется его отрицание.
Так, для n=1 можно записать, что
,
дляn = 3
и т. д. Полученные таким образом
произведения объединены логическим
сложением. В результате для функции по
табл. 2.1 получим СДНФ в виде
. (2.1)
Электрическая схема, реализующая функцию (2.1), должна содержать два элемента НЕ, четыре трехвходовых элемента И и один четырехвходовый элемент ИЛИ (рис. 2.11).
Рис. 2.11. Электрическая схема, реализующая логическую функцию, заданную табл. 2.1
Для замены в СКНД используются наборы переменных, где функция принимает значение «0». В данном случае это набор с номерами 0, 2, 4, 6. Для этих наборов записывается сумма аргументов, причем если аргумент имеет значение 0, то записывается сам аргумент, а если 1 – его отрицание. Полученные таким образом суммы (макстермы) объединяются логическим умножением. Для рассматриваемой функции по табл. 2.1 получим логическое уравнение в СКНФ форме в виде
. (2.2)
Для реализации структурной схемы потребуется два инвертора, четыре элемента ИЛИ на три входа и один четырехвходовый элемент И.