Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фомичев Ю.М., Сергеев В.М. -- Электроника. Элементная база, аналоговые и цифровые функциональные устройства.doc
Скачиваний:
248
Добавлен:
25.03.2016
Размер:
19.15 Mб
Скачать

7.2.2. Стабилизаторы постоянного напряжения

Стабилизаторы постоянного напряжения (СПН) обеспечивают стабильный уровень выходного напряжения источника питания при действии двух дестабилизирующих факторов – нестабильности входного напряжения и изменениях выходного (нагрузочного) тока. СПН является принципиально нелинейным устройством, связь между выходным напряжением U2, входнымU1и выходным токомI2может быть представлена некоторой функциональной зависимостью

U2=F(U1, I2).

Линеаризуя это уравнение относительно некоторого номинального режима

U20, U10, I20,

получаем уравнение для приращений

,

где – коэффициент стабилизации; (7.1)

–выходное сопротивление. (7.2)

Соотношения (7.1,7.2) являются основными для определения качества стабилизатора. Из уравнений следует, что для идеального стабилизатора необходимо иметь

k, r220.

Различают два типа стабилизатора – параметрические и компенсационные.В параметрических СПН используются стабилизирующие свойства стабилитрона, в которых при изменении тока в режиме электрического пробоя в широких пределах напряжение остается практически неизменным.

Рис. 7.7. Схема параметрического СПН

Рис. 7.8. Расчетная схема для определения параметров параметрического стабилизатора

Схема параметрического (пассивного) СПН приведена на рис. 7.7. Изменение входного напряжения (U1) или тока нагрузки (I2) в этой схеме приводит лишь к изменению тока через стабилитрон (Iст), а напряжение на нем, которое и равняется выходному напряжению, меняется незначительно.

Используя линеаризованные расчетные схемы, с учетом соотношений (7.1) и (7.2) – рис. 7.8, можем получить значения параметров:

(7.3)

Требуемый коэффициент стабилизации согласно (7.3) можно обеспечивать за счет увеличения балластного резистора R0, хотя это приведет к снижению КПД стабилизатора.

Поэтому в качестве балластного элемента чаще всего используются нелинейные элементы с большим дифференциальным сопротивлением. Наиболее просто такая схема реализуется на полевом транзисторе (рис. 7.9).

Рис. 7.10. Схема интегрального опорного источника без применения стабилитрона

Рис. 7.9. Схема параметрического СПН с нелинейным балластным элементом

В силу особенности сквозной ВАХ полевого транзистора с управляющим p-n-переходом напряжение на стабилитроне одновременно является напряжением смещения транзистора, задающего номинальный ток через стабилитронIс0.Большое сопротивление для приращений участка сток-исток обеспечивает высокий коэффициент стабилизации в такой схеме. Выходное же сопротивление остается по-прежнему равным дифференциальному сопротивлению стабилитрона, которое у лучших образцов составляет единицы – десятки Ом, что в большинстве случаев является неприемлемым. Поэтому параметрический СПН целесообразно использовать в системах, где ток нагрузки практически не меняется, например в качестве опорного источника. Однако температурный дрейф, разброс напряжения стабилизации стабилитронов достаточно велик и в микросхемном исполнении чаще всего используются опорные источники, не содержащие стабилитронов. В этих источниках путем выбора соответствующих параметров схемы напряжение на его зажимах равно напряжению запрещенной зоны кремния с очень высокой температурной стабильностью. Пример реализации такого источника приведен на рис. 7.10.

Близкие к идеальным характеристики можно получить в СПН компенсационного типана основе усилителей постоянного тока с обратной связью по отклонению выходного напряжения относительно некоторого постоянного (опорного) напряжения вспомогательного источника. Обобщенная структурная схема компенсационного СПН изображена на рис. 7.11. Любые отклонения выходного напряжения от номинального значения выделяются путем сравнения опорного напряженияU0и части выходногоUос, усиливаются и так воздействуют на регулирующий транзисторVT, чтобы свести отклонение к минимуму. Таким образом, в процессе работы меняется только напряжение коллектор-эмиттер регулятора.

Рассматривая схему данного СПН как усилитель с глубокой обратной связью (VT– как выходной каскад усилителя мощности), на вход которого подано постоянное напряжениеU0, на основе свойств идеального операционного усилителя, записываем:

(7.4)

Если U0=const, отношениеR2/R1= const, то из (7.4) следует, чтоU2=const при действии любых дестабилизирующих факторов. Предельная стабильность выходного напряжения, кроме стабильностиU0, и отношенияR2/R1определяется также температурным дрейфом смещения нуля ОУ. Параметры современных прецизионных ОУ позволяют обеспечить практически идеальный СПН.

Рис. 7.11. Обобщенная схема СПН компенсационного типа

По представленной на рис. 7.11 схеме СПН реализованы стабилизаторы в интегральном исполнении (например, серии К142ЕН1-9, КР1158 и др.) на различные значения выходных напряжений от 3 до 90 В.В таком исполнении схемы имеют только три внешних вывода: вход, выход и общий провод. На рис. 7.12 приведена схема подключения такого стабилизатора. Выходное напряжение подобного СПН можно изменять в некоторых пределах. На рис. 7.13 приведена схема включения микросхемы для увеличения выходного напряжения

Uвых= Uном+ UR2.

При этом входное должно оставаться больше выходного напряжения примерно на 3 В. Серийные СПН рассчитаны на ток нагрузки от десятых долей до единиц ампер. Включением дополнительного регулирующего транзистора можно увеличить нагрузочную способность СПН.

Рис. 7.12. Схема подключения трехвходового СПН

Рис. 7.13. Подключение СПН для получения повышенного Uвых

Рассмотренные стабилизаторы стабилизируют положительные напряжения. Однако те же самые СПН можно использовать и для стабилизации отрицательных напряжений, если использовать гальванически изолированное от земли входное напряжение (см. рис. 7.14). В настоящее время выпускаются и стабилизаторы отрицательного напряжения, например, отечественные трехвходовые микросхемы серии КР1162.

В тех случаях, когда нужно разнополярное напряжение с общей точкой, могут применяться двуполярные СПН с фиксированным выходным напряжением, например К142ЕН6 (см. рис. 7.15).

Рис. 7.14. Стабилизация отрицательного напряжения

Рис. 7.15. Типовая схема включения К142ЕН6