Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биологическая химия / Курс лекций по биохимии.doc
Скачиваний:
597
Добавлен:
18.03.2016
Размер:
14.51 Mб
Скачать

R Аминоацил-тРнк

Собственно трансляция проходит в три этапа: инициация, элонгация и терминация.

Инициация: иРНК поступает на ма-лую субъединицу рибосомы 5/-концом, к инициирующему кодону (АУГ) присоеди-няется первая аминоацил-тРНК (мет-тРНК), и комплекс «закрывается» большой субъединицей рибосомы. В образовании инициирующего комплекса участвуют белковые факторы инициации (IF-1, 2, 3) и используется энергия ГТФ.

Элонгация: в аминоацильный участок поступает следующая аминоацил-тРНК. Фермент пептидилтрансфераза образует пептидную связь между активированной карбо-ксильной группой первой аминокислоты и аминогруппой второй аминокислоты. Образованный при этом дипептид «зависает» в аминоацильном центре. Затем с помощью транслоказы и энергии ГТФ рибосома перемещается по иРНК на один кодон, аминоацильный участок освобождается, туда поступает новая аминокислота.

Терминация наступает тогда, когда в аминоацильном участке оказывается один из терминирующих (нонсенс) кодонов. К таким кодонам присоединяются специальные белки (рилизинг-факторы), которые высвобождают синтезированный пептид и вызывают диссоциацию субъединиц рибосомы.

Многие белки синтезируются в неактивном виде (в виде предшественников) и после схождения с рибосом подвергаются постсинтетической модификации. Виды модификации белков:

  1. частичный протеолиз (удаление N-конце-вого мет и сигнального пептида, образование активных форм ферментов и гормонов);

  2. объединение протомеров и формирование четвертичной структуры белков;

  3. образование внутри- и межцепочечных S–S связей;

  4. ковалентное присоединение кофакторов к ферментам (пиридоксальфосфат, биотин);

  5. гликозилирование (гормоны, рецепторы);

  6. модификация остатков аминокислот:

  • гидроксилирование про и лиз (коллаген);

  • йодирование тир (тиреоидные гормоны);

  • карбоксилирование глу (факторы свертывания крови);

  1. фосфорилирование (казеин молока, регуляция активности ферментов);

  2. ацетилирование (гистоны);

  3. пренилирование (G-белки).

Регуляция биосинтеза белка в клетке

Синтез белка в клетке можно регулировать на этапе транскрипции, созревания иРНК, транспорта ее из ядра в цитоплазму, изменяя стабильность иРНК, в процессе трансляции и посттрансляционной модификации. Регуляция на самых ранних этапах (на уровне экспрессии генов) является наиболее выгодной и потому широко используется.

Примером регуляции экспрессии генов является работа lac-оперона у E. coli. Lac-опе-рон содержит 3 структурных гена ферментов, участвующих в метаболизме лактозы. В отсутствие лактозы оперон заблокирован белком репрессором.

В присутствии индуктора (лактозы) репрессор меняет свою конформацию и отсоединяется от ДНК. Однако если в этот момент в среде имеется глюкоза (более доступный источник энергии), транскрипция не идет. В том случае, если глюкоза отсутствует, в клетке увеличивается уровень цАМФ (сигнал «голода») и цАМФ в комплексе со специальным белком (catabolite activator protein) связывается с промотором. Только в присутствии этого белка РНК-полимераза может образовать прочную связь с промотором и начать транскрипцию.

Белковые факторы, которые способствуют связыванию РНК-полимеразы с промотором, называются факторами транскрипции.

Регуляторная часть генов эукариот устроена более сложно. Имеются энхансеры (элементы, усиливающие транскрипцию), сайленсеры (ослабляющие), адапторные элементы. Факторы транскрипции могут связываться с любым из этих элементов, тем самым регулировать функции генов. В качестве индукторов биосинтеза белка на генетическом уровне могут выступать не только субстраты (лактоза для лактазы), но и стероидные гормоны, витамин Д, тиреоидные гормоны, ионы металлов и др.

СОВРЕМЕННЫЕ МЕТОДЫ МОЛЕКУЛЯРНОЙ БИОЛОГИИ

Основными инструментами в работе молекулярного биолога с нуклеиновыми кислотами являются ферменты. Используютрестриктазы(эндонуклеазы, которые узнают специфические последовательности в ДНК и разрезают молекулу ДНК в этом месте),ДНК-полимеразы,ДНК-лигазы,экзонуклеазыи др.

В настоящее время в основе большинства методов ДНК-диагностики лежит полимеразная цепная реакция (ПЦР). Она позволяет быстро получить большое количество копий молекул ДНК (или их фрагментов), достаточное для их даль-нейшего анализа.

Этапы проведения:

  • нагревание до 90С (денатура-ция ДНК);

  • добавление праймера и охлаж-дение до 55С (присоединение или «от-жиг» праймера);

  • добавление нуклеотидов (суб-стратов для синтеза) и ДНК-полимеразы, которая проводит удвоение ДНК; затем цикл повторяется.

Метод широко используется для диагностики инфекционных заболеваний (туберкулез, хламидиоз, цитомегаловирусная инфекция, СПИД и др.). ПЦР позволяет обнаружить возбудителя в биологическом материале даже тогда, когда другие методы оказываются неэффективны. Второе направление использования метода ПЦР — генетическое тестирование (обнаружение мутаций в генах и диагностика наследственной патологии).

Клонирование — способ получения большой популяции идентичных молекул, клеток, организмов — потомков одного предка.

Проводятся эксперименты по клонированию стволовых клеток человека и их использованию в стоматологической практике (заместительная клеточная терапия).

Для клонирования отдельных генов используются технологии рекомбинантных ДНК: нужный ген на специальном носителе вводят в бактериальную клетку. В процессе размножения бактерий получают огромное число копий гена.

Вектор — носитель (плазмида или бактериофаг), в который может быть введена чужеродная ДНК с целью клонирования.

Плазмида — небольшая кольцевидная двухцепочечная ДНК, которая реплицируется независимо от ДНК хозяина.

Принципиальный подход к клонированию генов: в плазмиде создают дефект (брешь) с помощью рестриктазы. С помощью этой же рестриктазы вырезают участок ДНК с нужным геном. Благодаря «липким концам» происходит включение чужеродной ДНК в вектор, ДНК-лигаза восстанавливает целостность плазмиды и образованная гибридная молекула помещается в бактериальную клетку.

Экспрессия гена, закодированного в чужеродной ДНК, приводит к образованию бактериями нужного белка, его можно выделить и использовать. Технологии рекомбинантных ДНК позволяют получать для медицинской практики вакцины, инсулин, соматотропный гормон, интерфероны, эритропоэтин, белки эмали и др.

Соседние файлы в папке Биологическая химия