
- •Екзаменаційний білет № 1
- •2. Вирішення багатокрітеріальних задач.
- •3. Математичне описування динамічних систем.
- •Екзаменаційний білет № 2
- •3. Моделювання систем за допомогою безперервних марківських ланцюгів.
- •Екзаменаційний білет № 3
- •1. Планування. Управління ресурсами, боротьба з взаємоблокуванням.
- •3. Вирішення багатокрітеріальних задач.
- •Екзаменаційний білет № 4
- •1. Файлові системи. Принципи побудови файлових систем.
- •2. Основні нормальні форми. Характеристика і приклади відносин, що знаходяться в 1нф, 2нф, 3нф.
- •Id, category, product1, product2, product3
- •3. Моделювання систем за допомогою дискретних марківських ланцюгів.
- •Екзаменаційний білет № 5
- •1. Поняття асемблера, компілятора, транслятора, інтерпретатора.
- •2. Основні оператори мови маніпулювання даними. Оператор вибірки даних (одно- і багатотабличні запити оператора select).
- •3. Поняття системи масового обслуговування. Класифікація систем масового обслуговування.
- •Классификация смо и их основные элементы
- •Екзаменаційний білет № 6
- •1. Завантажувачі. Завдання завантажувачів. Принципи побудови завантажувачів.
- •2. Технологія Ethernet.
- •3. Стадії та етапи створення асу тп.
- •Екзаменаційний білет № 7
- •1. Принципи об’єктно-орієнтованого програмування (парадигми програмування, поняття класу).
- •2. Технологія Token Ring.
- •3. Склад і коротка характеристика розділів технічного проекта.
- •Екзаменаційний білет № 9
- •1. Інкапсуляція. Поняття, сфери застосування.
- •2. Характеристика протоколу hdlc.
- •3. Методи боротьби з помилками, що виникають в каналах передачі даних. Завадостійке кодування. Екзаменаційний білет № 10
- •1. Поліморфізм. Поняття, сфери застосування.
- •2. Методи доступу в мережу.
- •3. Основні параметри завадостійких кодів. Принципи виявлення та виправлення помилок.
- •Екзаменаційний білет № 11
- •1. Принципи розробки розподілених клієнт-серверних програм. Особливості розробки мережевих програм з використанням сокетів.
- •2. Характеристика протоколу ip. Адресація в ip-мережах.
- •3. Циклічні коди. Алгоритми кодування і декодування. Циклические коды.
- •Свойства циклических кодов по обнаружению ошибок
- •Екзаменаційний білет № 12
- •1. Багаторівнева комп’ютерна організація – структура й призначення рівнів.
- •2. Характеристика протоколу tcp.
- •3. Статичні методи стиснення інформації. Алгоритм арифметичного стиснення.
- •Екзаменаційний білет № 13
- •1. Схема комп’ютера з єдиною шиною. Основні характеристики та принципи роботи шини комп’ютера.
- •2. Стадії та етапи створення асу тп.
- •3. Оптимальне кодування інформації. Алгоритми формування коду Хофмана та Шенона-Фано.
- •Екзаменаційний білет № 14
- •1. Структура процесора, внутрішні блоки, види регістрів.
- •2. Склад і коротка характеристика розділів технічного проекта.
- •3. Аналого-числові перетворення безперервного сигналу на базі теореми Котельникова в.А.
- •Екзаменаційний білет № 15
- •1. Команди процесора, структура команд. Цикл Фон-Неймана.
- •2. Склад і зміст проектних рішень з технічного забезпечення.
- •3. Протоколи фізичного рівня.
- •Екзаменаційний білет № 16
- •1. Структуру пам’яті комп’ютера. Елементи статичної та динамічної пам’яті.
- •2. Склад і задачі організацій, що беруть участь у роботах зі створення асу тп.
- •3. Характеристика протоколу ip. Адресація в ip-мережах.
- •Екзаменаційний білет № 17
- •1. Переривання, типи, алгоритм обробки переривання процесором.
- •2. Перелік видів випробувань асу тп та їх короткий зміст.
- •3. Характеристика протоколу tcp.
- •Екзаменаційний білет № 18
- •1. Загальні характеристики канального рівня.
- •2. Поняття системи масового обслуговування. Класифікація систем масового обслуговування.
- •Классификация смо и их основные элементы
- •3. Пропускна спроможність двійкового каналу зв’язку з перешкодами та без перешкод.
- •Екзаменаційний білет № 19
- •1. Загальні відомості з теорії систем. Класифікація систем.
- •2. Математичне описування динамічних систем.
- •3. Загальні характеристики канального рівня.
- •Екзаменаційний білет № 20
- •1. Поняття вимірювальної шкали. Види шкал.
- •2. Основні параметри завадостійких кодів. Принципи виявлення та виправлення помилок.
- •3. Стадії та етапи створення асу тп.
- •Екзаменаційний білет № 21
- •1. Показники якості та ефективності та крітерії їх оцінювання.
- •2. Структура процесора, внутрішні блоки, види регістрів.
- •3. Основні параметри завадостійких кодів. Принципи виявлення та виправлення помилок.
- •Екзаменаційний білет № 22
- •1. Вирішення задачі вибору.
- •2. Поняття операційної системи.
- •3. Розрахунок вартості проектних робіт ресурсним методом.
- •Екзаменаційний білет № 23
- •1. Декомпозиція. Компроміси між повнотою та простотою.
- •2. Характеристика протоколу hdlc.
- •3. Застосування елементних кошторисних норм для розрахунку вартості пусконалагоджувальних робіт.
- •Екзаменаційний білет № 24
- •1. Агрегування. Види агрегування.
- •2. Методи доступу в мережу.
- •3. Багатократні та комбіновані методи модуляції.
3. Багатократні та комбіновані методи модуляції.
Многократные методы модуляции
Эффективными средствами повышения пропускной способности каналов является передача сигналов с использованием многократной модуляции. В этих системах модулируемый параметр, (например, амплитуда, фаза, частота) переносчика может принимать не два (как при однократной модуляции), а больше двух разнообразных значений. В результате этого каждая передаваемая посылка переносит большее количество информации, чем при однократной модуляции, что позволяет увеличить скорость передачи информации, не изменяя длительности посылки.
В современных системах передачи дискретной информации наиболее широко применяется двукратная частотная модуляция (ДЧМ), двукратная ФМ (квадратная ФМ) и двукратная относительная фазовая модуляция (ДОФМ). Кроме этих видов модуляции, практическое применение находят амплитудно-относительная фазовая модуляция (АОФМ) и трехкратная относительная фазовая модуляция (ТОФМ), квадратурная амплитудная модуляция, которая представляет собой комбинацию двухуровневой АМ с ДОФМ.
При передаче двоичных сигналов методом ДЧМ (QFSK) модулируемый параметр, (частота передатчика) может принимать четыре значения:f1,f2,f3,f4
Модуляционный код приведен в табл. 1.
Таблица 1
Элемент 1-го канала (нечетный разряд) |
Элемент 2-го канала (четный разряд) |
Частота |
0 |
0 |
f1 |
0 |
1 |
f2 |
1 |
0 |
f3 |
1 |
1 |
f4 |
При передаче сообщений кодовыми комбинациями двоичного кода 1-элементами 1-го и 2-го каналов является соответственно нечетные и четные разряды этих кодовых комбинаций. Для формирования ДЧМ сигналов в этом случае необходимо:
поделить разряды передаваемой кодовой комбинации на два канала: 1-й канал - последовательность нечетных разрядов и 2-й канал - последовательность четных разрядов;
анализировать значение соседних нечетных и четных разрядов и формировать управляющие сигналы на смену частоты передатчика в зависимости от содержания каждой пары разрядов.
Принятые колебания ограничиваются и через полосовые фильтры, каждый из которых настроен на одну из частот f1,f2,f3,f4, поступают на соответствующие детекторы.Cвыходов детекторов сигналы поступают в декодирующее устройство, которое обеспечивает выдачу получателю разрядов, соответствующих частоте принятого сигнала.
Комбинированные методы модуляции.
Наряду с многократными методами модуляции широкое применение находят комбинированные методы. В этом случае модуляции подлежит не один, а несколько параметров несущего колебания. Такими параметрами могут быть амплитуда и фаза. Относительная амплитудно-фазовая модуляция (АОФМ) представляет собой комбинации ОФМ с многоуровневой (чаще двухуровневой)AM. При передаче сигналов средством АОФМ информация заключена не только в соотношении фаз соседних посылок (как при ОФМ), а и в амплитуде сигнала (как приAM). В общем случае амплитуда сигнала может принимать η значений. На рис.1показанная векторная диаграмма, которая объясняет принцип АОФМ при η=2.
Рис.1К пояснению АОФМ
Модулированное колебание при АОФМ состоит из отдельных посылок вида:
,
где Uk- амплитуда огибающей посылки, к = 1,2,...,.
С целью повышения помехоустойчивости модуляционный код (таблица соответствия передаваемой последовательности 1 и 0 амплитуде и фазе сигнала) строится таким образом, чтобы при переходе под влиянием помех в наиболее вероятный соседний уровень сигнала искажался один двоичный разряд.
Для обеспечения одинаковой помехоустойчивости при передаче любой последовательности 1 и 0 необходимо обеспечить равенство расстояний между концами векторов, отображающих сигналы.
Определим расстояние между концами
векторов - 2х, при амплитуде сигнала
.
Тогда в соответствии с рис.1
будет справедливо выражение:
.
Откуда:
.
Указанным требованиям удовлетворяет
модуляционный код (для
=
2), приведенный в табл.2
1-й подканал |
2-й подканал |
Величина скачка фазы |
Значение амплитуды |
0 |
0 |
180 |
|
0 |
1 |
180 |
|
1 |
0 |
0 |
|
1 |
1 |
0 |
|
Использование такого вида модуляции
обеспечивает увеличение скорости
передачи в
раз. Однако вероятность ошибки возрастает.
Увеличить скорость передачи можно, если модулировать не одно, а два несущих колебания, сдвинутых относительно друг друга на 90° Такой вид модуляции получил название квадратурной амплитудной модуляции. При квадратурной амплитудной модуляции (КАМ) два колебания, сдвинутых относительно друг друга на 90°, модулируется по фазе со скачком 180° и по амплитуде. Число градаций амплитуды может быть различно. В результате, например, при двух значениях амплитуды число возможных значений сигнала 4x4=16 Ансамбль сигналов удобно отображать с помощью пространственной точечной решетки (сигнального созвездия). Каждой точке сигнального созвездия, обозначающей конец вектора сигнала, соответствует А разрядов двоичного кода. На рис.2-изображены примеры сигнального созвездия для различных скоростей модуляции.
Так как с увеличением скорости ухудшается устойчивость, при больших скоростях передачи применяется помехоустойчивое кодирование. Широкое применение при этом находит исправляющий ошибки код. Вид модуляции, при котором используется квадратурная AMсовместно с исправляющим ошибки кодом, получил название треллис-модуляции (ТСМ).
Рис. 2Сигнальное созвездие
Рис. 2Сигнальное созвездие
Вероятность ошибки при КАМ:
,
где
- число уровней амплитуды;
;
,
.
КАМ-16: М=16, k= 4,=4.