
- •Введение
- •Глава 1 Строение, кристаллизация и свойства металлов
- •1.1. Кристаллическое строение конструкционных материалов
- •1.2. Дефекты в кристаллах и их влияние на свойства материалов
- •1.3. Фазы и виды фаз
- •1.4. Механические свойства материалов
- •1.4.1. Методы испытания механических свойств металлов
- •1.4.2. Испытание на твердость
- •1.4.3. Технологические свойства
- •Глава 2. Производство чугуна
- •2.1. Исходные материалы для производства чугуна
- •2.2. Обогащение руд
- •2.3. Подготовка материалов к доменной плавке
- •2.4. Выплавка чугуна
- •2.5. Классификация чугунов и их обозначение
- •Глава 3 Производство стали
- •3.1. Конверторные способы получения стали
- •3.2. Мартеновские способы производства стали
- •3.3. Получение стали в электрических печах
- •3.4. Разливка стали и получение слитков
- •Глава 4 Классификация сталей и их маркировка
- •4.1. Классификация стали
- •4.2. Маркировка стали
- •4.3. Конструкционные стали
- •4.3.1. Конструкционные, обыкновенного качества (строительные) стали
- •4.3.2. Низколегированные конструкционные стали
- •4.3.3.Конструкционные машиностроительные стали общего назначения
- •4.3.4. Конструкционные машиностроительные стали специализированного назначения
- •4.3.4.1. Пружинно-рессорные стали
- •4.3.4.2.Шарикоподшипниковые стали
- •4.3.4.3.Автоматные стали
- •4.3.4.4. Жаростойкие и жаропрочные стали и сплавы
- •4.4. Инструментальные стали
- •4.4.1. Углеродистые инструментальные стали
- •4.4.2. Легированные инструментальные стали
- •4.4.3. Быстрорежущие стали
- •4.4.4. Штамповые стали
- •4.5. Стали и сплавы с особыми свойствами
- •Глава 5 Медь и ее сплавы
- •5.1. Медные руды и пути их переработки
- •5.1.1. Обогащение руд флотацией
- •5.1.2. Получение медных штейнов
- •5.1.3. Переработка медного штейна
- •5.1.4. Рафинирование меди
- •5.2. Латуни
- •5.3. Бронзы
- •Глава 6 Алюминий и его сплавы
- •6.1. Руды алюминия
- •6.2. Производство глинозема
- •6.3. Электролитическое получение алюминия
- •6.4. Алюминиевые сплавы
- •Глава 7 Литейное производство
- •7.1. Литейные сплавы и их применение
- •7.2. Приготовление литейных сплавов
- •7.3. Литейные свойства сплавов
- •7.4. Способы изготовления отливок
- •7.4.1. Изготовление отливок в разовых песчаных формах
- •7.4.1.1. Изготовление литейных форм
- •7.4.1.2. Заливка литейных форм
- •7.4.2. Литье по выплавляемым моделям
- •7.4.3. Литье в оболочковые формы
- •7.4.4. Литье в кокиль
- •7.4.5. Литье под давлением
- •7.4.6. Центробежное литье
- •7.5. Общие принципы конструирования литых деталей
- •Глава 8 Обрабртка давлением
- •8.1. Виды обработки давлением и типы применяемого оборудования
- •8.1.1. Прокатка
- •8.1.2. Волочение
- •8.1.3. Прессование
- •8.1.4. Ковка
- •8.1.5. Штамповка
- •8.2. Физико-механические основы обработки давлением
- •8.3.Холодная штамповка
- •8.3.1. Высадка
- •8.3.2.Выдавливание
- •8.3.3.Объемная холодная формовка
- •8.3.4. Листовая штамповка
- •8.3.4.1. Разделительные операции
- •8.3.4.2.Формоизменяющие операции
- •8.3.4.2.1. Гибка
- •8.3.4.2.2. Вытяжка
- •8.3.4.2.3. Отбортовка
- •8.3.4.2.4.Обжим
- •8.3.4.2.5. Раздача
- •8.4. Горячая объемная штамповка
- •8.5. Разработка чертежа поковки
- •Глава 9 Получение заготовок методами сварки
- •9.1.Сварка давлением
- •9.1.1. Контактная электрическая сварка
- •9.1.1.1.Стыковая контактная сварка
- •9.1.1.2.Точечная сварка
- •9.1.1.3.Шовная сварка
- •9.1.1.4.Конденсаторная сварка.
- •9.1.2. Диффузионная сварка
- •9.1.3.Сварка трением
- •9.1.4. Холодная сварка
- •9.2.Сварка плавлением
- •9.2.1.Электрическая дуговая сварка
- •9.2.1.1. Ручная дуговая сварка
- •9.2.1.2.Автоматическая дуговая сварка под флюсом
- •9.2.1.3. Сварка в среде защитных газов
- •9.3. Электронно-лучевая и лазерная сварка
- •9.4. Электрошлаковая сварка
- •9.5. Свариваемость металла
- •9.6. Технологичность сварных конструкций
- •9.7. Пайка
- •9.7.1. Материалы для пайки
- •9.7.2. Способы пайки
- •9.8. Контроль качества сварных и паяных соединений
- •Глава 10 Обработка заготовок деталей машин
- •10.1. 1. Кинематика резания
- •10.1.2. Методы формообразования поверхностей
- •10.2. Режим резания, геометрические параметры срезаемого слоя, шероховатость поверхности
- •10.3. Геометрические параметры режущего инструмента
- •10.4. Физическая сущность резания
- •10.5. Силовое взаимодействие инструмента и заготовки
- •10.6.Тепловые явления при резании
- •Глава 11 Инструментальные материалы
- •11.1. Требования к инструментальным материалам
- •11.2. Инструментальные стали
- •11.3. Твердые сплавы
- •11.4. Синтетические сверхтвердые и керамические материалы
- •11.5. Абразивные материалы
- •Глава 12 Обработка заготовок на токарных станках
- •12.1 Типы токарных станков
- •12.2. Режущий инструмент и приспособления для обработки заготовок на токарных станках
- •12.3. Обработка заготовок на токарных станках
- •Глава 13 Обработка заготовок на сверлильных и расточных станках
- •13.1.1 Типы сверлильных станков
- •13.1.2. Режущий инструмент и схемы обработки на сверлильных станках
- •13.1.3. Схемы обработки на сверлильных станках
- •13.2. Типы расточных станков
- •13.2.1. Режущий инструмент и схемы обработки на расточных станках
- •Глава 14 Обработка заготовок на фрезерных станках
- •14.1. Типы фрезерных станков
- •14.2. Режущий инструмент
- •14.3. Схемы обработки на фрезерных станках
- •Глава 15 Обработка заготовок на шлифовальных станках
- •15.1. Основные типы станков
- •15.2. Схемы обработки
- •15.3. Бесцентровое шлифование
- •Глава 16 Обработка заготовок на зубообрабатывающих станках
- •16.1. Профилирование зубьев зубчатых колес
- •Глава 17 Обработка заготовок пластическим деформированием
- •17.1. Сущность пластического деформирования
- •17.2. Чистовая и упрочняющая обработка пластическим деформированием
- •Глава 18 Отделочная обработка
- •18.1. Отделка поверхностей чистовыми резцами и шлифовальными кругами
- •18.2. Полирование
- •18.3. Абразивно-жидкостная отделка
- •18.4. Притирка
- •18.5. Хонингование
- •18.6. Суперфиниш
- •Глава 19 Пластические массы
- •19.1. Классификация пластмасс и способов их переработки
- •19.2. Способы переработки пластмасс в детали в вязко-текучем состоянии
- •19.3. Способы переработки пластмасс в детали в высокоэластическом состоянии
- •19.4. Получение деталей из жидких полимеров
- •19.5. Способы получения деталей из пластмасс в твердом состоянии
18.5. Хонингование
Хонингование применяют для того, чтобы получить отверстия с малым отклонением размера и параметром шероховатости, а также для создания микропрофиля обработанной поверхности в виде сетки. Такой профиль необходим для удержания на стенках отверстия смазочного материала при работе машины, например, двигателя внутреннего сгорания. Чаще всего обрабатывают сквозные и реже – ступенчатые отверстия, как правило, неподвижно закрепленных заготовок.
Поверхность заготовки обрабатывают мелкозернистыми абразивными брусками, которые закрепляют в хонинговальной головке – хоне, являющейся режущим инструментом. Инструмент вращается и одновременно возвратно-поступательно перемещается вдоль оси, обрабатываемого отверстия (рис.84, а). Отношение скоростей указанных движений составляет 1÷10 и определяет условия резания; скорость вращения хона для заготовок из стали равна 45÷60 м/мин, а из чугуна и бронзы – 60÷75 м/мин.
Сочетание движений инструмента приводит к тому, что на обрабатываемой поверхности появляется сетка микроскопических винтовых царапин – следов перемещения абразивных зерен. Угол пересечения этих следов зависит от отношения скоростей, поэтому необходимый вид сетки на поверхности отверстия можно получать в ходе хонингования. На рис. 84, б дана развертка внутренней цилиндрической поверхности заготовки и схема образования сетки.
Рис. 84. Схема хонингования
Крайние нижнее 1 и верхнее 2 положения абразивных брусков устанавливают так, что создается перебег n. Перебег необходим для того, чтобы образующие отверстия, были прямолинейными, и отверстие имело правильную геометрическую форму. Совершая вращательное движение, абразивные бруски при каждом двойном ходе начинают резание с нового положения 3 хона с учетом смещения по шагу t, поэтому исключается наложение траекторий абразивных зерен.
Абразивные бруски всегда контактируют с обрабатываемой поверхностью, так как они раздвигаются в радиальных направлениях механическими, гидравлическими или пневматическими устройствами. Давление брусков следует контролировать. Минимальное давление получают при хонинговании с наложением ультразвуковых колебаний. В этом случае уменьшается засаливание брусков, как частицы металла легче отделяются от абразивов.
Хонингованием исправляют такие отклонения формы предыдущей обработки, как овальность, конусность, отклонение от цнлиндричности и др., если общая толщина снимаемого слоя не превосходит 0,01÷0,2 мм. Отклонения расположения оси отверстия этим методом, как правило, не исправляют. Различают предварительное и чистовое хонингование. Предварительное хонингование используют для исправления погрешностей предыдущей обработки, а чистовое – для получения малой шероховатости поверхности.
18.6. Суперфиниш
Отделку поверхностей суперфинишированием проводят в основном для того, чтобы уменьшить шероховатость, оставшуюся от предыдущей обработки. При этом меняется высота и вид микро-выступов. Обработанная поверхность имеет сетчатый рельеф, а каждый микро-выступ скругляется. Фактическая поверхность контакта с другими деталями увеличивается, чем обеспечиваются более благоприятные условия взаимодействия трущихся поверхностей. Суперфинишированием обрабатывают плоские, цилиндрические (наружные и внутренние), конические и сферические поверхности заготовок из закаленной стали, реже – из чугуна и бронзы.
Обработку поверхностей производят абразивными брусками, которые устанавливают в специальной головке. Характерным для суперфиниширования является колебательное движение брусков одновременно с движением заготовки. Резание производится при давлении брусков I÷3 МПа, смазочный материал – малой вязкости.
При обработке наружной цилиндрической поверхности (рис. 85, а) плотная сетка микронеровностей создается сочетанием вращательного движения заготовки, возвратно-поступательного ее перемещения, колебательного движения брусков вдоль оси заготовки. Амплитуда колебаний брусков составляет 1,5÷6 мм, а частота колебаний 400÷1200 в минуту. Колебательное движение головки ускоряет съем металла и улучшает однородность поверхности. Отношение скоростей движений вращательного и возвратно-поступательного в начале обработки составляет 2÷4, а в конце 8÷16. Процесс характеризуют сравнительно малые скорости движения резания, которые составляют 5÷7 м/мин. Бруски самоустанавливаются по обрабатываемой поверхности.
Рис. 85. Схема суперфиниширования
Важную роль при обработке играет смазывающе-охлаждающая технологическая среда. Масляная пленка покрывает обрабатываемую поверхность, но наиболее крупные микровыступы (рис. 85, б) прорывают ее и в первую очередь срезаются бруском. Давление брусков на выступы оказывается большим. По мере дальнейшей обработки давление снижается, так как все большее число выступов прорывает масляную пленку и, наконец, в тот момент (рис. 85, в), когда давление бруска не может разорвать пленку, она становится сплошной. Создаются условия для жидкостного трения. Процесс отделки автоматически прекращается. В качестве СОТС используют смесь керосина с веретенным и турбинным маслом.
Лучший результат получают при обработке заготовок из стали брусками из электрокорунда, а при обработке заготовок из чугуна и цветных металлов – брусками с зерном из карбида кремния. В большинстве случаев применяют бруски на керамической и бакелитовой связках. Применение алмазных брусков увеличивает не только производительность обработки, но и стойкость инструмента в 80÷100 раз. Алмазные бруски работают при тех же режимах, что и абразивные, но с большим давлением. Чаще всего для суперфиниширования используют два бруска, а при обработке крупных деталей – три или четыре.
Обычное суперфиниширование не ликвидирует отклонения формы, полученные на предшествующей обработке (волнистость, конусность, овальность и др.), но при усовершенствовании процесса можно снимать увеличенные слои металла, использовать особые режимы резания. В этом случае погрешности предыдущей обработки существенно снижаются.