
- •Введение
- •Глава 1 Строение, кристаллизация и свойства металлов
- •1.1. Кристаллическое строение конструкционных материалов
- •1.2. Дефекты в кристаллах и их влияние на свойства материалов
- •1.3. Фазы и виды фаз
- •1.4. Механические свойства материалов
- •1.4.1. Методы испытания механических свойств металлов
- •1.4.2. Испытание на твердость
- •1.4.3. Технологические свойства
- •Глава 2. Производство чугуна
- •2.1. Исходные материалы для производства чугуна
- •2.2. Обогащение руд
- •2.3. Подготовка материалов к доменной плавке
- •2.4. Выплавка чугуна
- •2.5. Классификация чугунов и их обозначение
- •Глава 3 Производство стали
- •3.1. Конверторные способы получения стали
- •3.2. Мартеновские способы производства стали
- •3.3. Получение стали в электрических печах
- •3.4. Разливка стали и получение слитков
- •Глава 4 Классификация сталей и их маркировка
- •4.1. Классификация стали
- •4.2. Маркировка стали
- •4.3. Конструкционные стали
- •4.3.1. Конструкционные, обыкновенного качества (строительные) стали
- •4.3.2. Низколегированные конструкционные стали
- •4.3.3.Конструкционные машиностроительные стали общего назначения
- •4.3.4. Конструкционные машиностроительные стали специализированного назначения
- •4.3.4.1. Пружинно-рессорные стали
- •4.3.4.2.Шарикоподшипниковые стали
- •4.3.4.3.Автоматные стали
- •4.3.4.4. Жаростойкие и жаропрочные стали и сплавы
- •4.4. Инструментальные стали
- •4.4.1. Углеродистые инструментальные стали
- •4.4.2. Легированные инструментальные стали
- •4.4.3. Быстрорежущие стали
- •4.4.4. Штамповые стали
- •4.5. Стали и сплавы с особыми свойствами
- •Глава 5 Медь и ее сплавы
- •5.1. Медные руды и пути их переработки
- •5.1.1. Обогащение руд флотацией
- •5.1.2. Получение медных штейнов
- •5.1.3. Переработка медного штейна
- •5.1.4. Рафинирование меди
- •5.2. Латуни
- •5.3. Бронзы
- •Глава 6 Алюминий и его сплавы
- •6.1. Руды алюминия
- •6.2. Производство глинозема
- •6.3. Электролитическое получение алюминия
- •6.4. Алюминиевые сплавы
- •Глава 7 Литейное производство
- •7.1. Литейные сплавы и их применение
- •7.2. Приготовление литейных сплавов
- •7.3. Литейные свойства сплавов
- •7.4. Способы изготовления отливок
- •7.4.1. Изготовление отливок в разовых песчаных формах
- •7.4.1.1. Изготовление литейных форм
- •7.4.1.2. Заливка литейных форм
- •7.4.2. Литье по выплавляемым моделям
- •7.4.3. Литье в оболочковые формы
- •7.4.4. Литье в кокиль
- •7.4.5. Литье под давлением
- •7.4.6. Центробежное литье
- •7.5. Общие принципы конструирования литых деталей
- •Глава 8 Обрабртка давлением
- •8.1. Виды обработки давлением и типы применяемого оборудования
- •8.1.1. Прокатка
- •8.1.2. Волочение
- •8.1.3. Прессование
- •8.1.4. Ковка
- •8.1.5. Штамповка
- •8.2. Физико-механические основы обработки давлением
- •8.3.Холодная штамповка
- •8.3.1. Высадка
- •8.3.2.Выдавливание
- •8.3.3.Объемная холодная формовка
- •8.3.4. Листовая штамповка
- •8.3.4.1. Разделительные операции
- •8.3.4.2.Формоизменяющие операции
- •8.3.4.2.1. Гибка
- •8.3.4.2.2. Вытяжка
- •8.3.4.2.3. Отбортовка
- •8.3.4.2.4.Обжим
- •8.3.4.2.5. Раздача
- •8.4. Горячая объемная штамповка
- •8.5. Разработка чертежа поковки
- •Глава 9 Получение заготовок методами сварки
- •9.1.Сварка давлением
- •9.1.1. Контактная электрическая сварка
- •9.1.1.1.Стыковая контактная сварка
- •9.1.1.2.Точечная сварка
- •9.1.1.3.Шовная сварка
- •9.1.1.4.Конденсаторная сварка.
- •9.1.2. Диффузионная сварка
- •9.1.3.Сварка трением
- •9.1.4. Холодная сварка
- •9.2.Сварка плавлением
- •9.2.1.Электрическая дуговая сварка
- •9.2.1.1. Ручная дуговая сварка
- •9.2.1.2.Автоматическая дуговая сварка под флюсом
- •9.2.1.3. Сварка в среде защитных газов
- •9.3. Электронно-лучевая и лазерная сварка
- •9.4. Электрошлаковая сварка
- •9.5. Свариваемость металла
- •9.6. Технологичность сварных конструкций
- •9.7. Пайка
- •9.7.1. Материалы для пайки
- •9.7.2. Способы пайки
- •9.8. Контроль качества сварных и паяных соединений
- •Глава 10 Обработка заготовок деталей машин
- •10.1. 1. Кинематика резания
- •10.1.2. Методы формообразования поверхностей
- •10.2. Режим резания, геометрические параметры срезаемого слоя, шероховатость поверхности
- •10.3. Геометрические параметры режущего инструмента
- •10.4. Физическая сущность резания
- •10.5. Силовое взаимодействие инструмента и заготовки
- •10.6.Тепловые явления при резании
- •Глава 11 Инструментальные материалы
- •11.1. Требования к инструментальным материалам
- •11.2. Инструментальные стали
- •11.3. Твердые сплавы
- •11.4. Синтетические сверхтвердые и керамические материалы
- •11.5. Абразивные материалы
- •Глава 12 Обработка заготовок на токарных станках
- •12.1 Типы токарных станков
- •12.2. Режущий инструмент и приспособления для обработки заготовок на токарных станках
- •12.3. Обработка заготовок на токарных станках
- •Глава 13 Обработка заготовок на сверлильных и расточных станках
- •13.1.1 Типы сверлильных станков
- •13.1.2. Режущий инструмент и схемы обработки на сверлильных станках
- •13.1.3. Схемы обработки на сверлильных станках
- •13.2. Типы расточных станков
- •13.2.1. Режущий инструмент и схемы обработки на расточных станках
- •Глава 14 Обработка заготовок на фрезерных станках
- •14.1. Типы фрезерных станков
- •14.2. Режущий инструмент
- •14.3. Схемы обработки на фрезерных станках
- •Глава 15 Обработка заготовок на шлифовальных станках
- •15.1. Основные типы станков
- •15.2. Схемы обработки
- •15.3. Бесцентровое шлифование
- •Глава 16 Обработка заготовок на зубообрабатывающих станках
- •16.1. Профилирование зубьев зубчатых колес
- •Глава 17 Обработка заготовок пластическим деформированием
- •17.1. Сущность пластического деформирования
- •17.2. Чистовая и упрочняющая обработка пластическим деформированием
- •Глава 18 Отделочная обработка
- •18.1. Отделка поверхностей чистовыми резцами и шлифовальными кругами
- •18.2. Полирование
- •18.3. Абразивно-жидкостная отделка
- •18.4. Притирка
- •18.5. Хонингование
- •18.6. Суперфиниш
- •Глава 19 Пластические массы
- •19.1. Классификация пластмасс и способов их переработки
- •19.2. Способы переработки пластмасс в детали в вязко-текучем состоянии
- •19.3. Способы переработки пластмасс в детали в высокоэластическом состоянии
- •19.4. Получение деталей из жидких полимеров
- •19.5. Способы получения деталей из пластмасс в твердом состоянии
1.4.2. Испытание на твердость
Твердостью называется способность металла сопротивляться внедрению в него другого, более твердого тела. Определение твердости является наиболее часто применяемым методом испытания металлов. Для определения твердости не требуется изготовления специальных образцов, то есть испытание проводится без разрушения детали.
Существуют различные методы определения твердости – вдавливанием, царапанием, упругой отдачей, а также магнитный метод. Наиболее распространенным является метод вдавливания в металл стального шарика, алмазного конуса или алмазной пирамиды. Для испытания на твердость применяют специальные приборы, несложные по устройству и простые в обращении.
Твердость по БринеллюВ поверхность испытываемого металла с определенной силой вдавливают стальной закаленный шарик диаметром 10, 5 или 2,5 мм. В результате на поверхности металла получается отпечаток (лунка). Диаметр отпечатка измеряют специальной лупой с делениями. Число твердости по Бринеллю записывается латинскими буквами НВ, после которых записывается числовой показатель твердости. Например, твердость по НВ 220. Метод Бринелля не рекомендуется применять для металлов твердостью более НВ 450, так как шарик может деформироваться и результат получится неправильным. Нельзя также испытывать тонкие материалы, которые при вдавливании шарика продавливаются.
Твердость по Роквеллу – испытание на твердость вдавливанием конуса или шарика в поверхность испытываемого металла. Вдавливают алмазный конус с углом 120° или стальной закаленный шарик диаметром 1,59 мм. Испытания шариком применяют при определении твердости мягких материалов, а алмазным конусом – при испытании твердых материалов. Число твердости по Роквеллу записывается латинскими буквами HRC, после которых записывается числовое значение твердости. Например, твердость по HRC 230.
Твердость по Виккерсу – испытание на твердость вдавливанием пирамиды. В поверхность металла вдавливают четырехгранную алмазную пирамиду .По нагрузке, приходящейся на единицу поверхности отпечатка, определяют число твердости, обозначаемое HV 140.
Испытание на микротвердость.
Это испытание применяют при определении
твердости микроскопически малых объемов
металла, например твердости отдельных
структурных составляющих сплавов.
Микротвердость определяют на специальном
приборе, состоящем из механизма нагружения
с алмазным наконечником и металлографического
микроскопа. Поверхность образца
подготавливают так же, как и для
микроисследования (шлифование,
полирование, травление). Четырехгранная
алмазная пирамида (с углом при вершине
136°, таким же, как и у пирамиды при
испытании по Виккерсу) вдавливается в
испытываемый материал под очень малой
нагрузкой. Твердость определяется
величиной
.
1.4.3. Технологические свойства
Технологические свойства металлов и сплавов характеризуют их способность поддаваться различным методам горячей и холодной обработки. К основным из них относят литейные свойства, ковкость, свариваемость и обрабатываемость режущим инструментом.
Литейные свойствахарактеризуют способность металла или сплава заполнять литейную форму, обеспечивать получение отливки заданных размеров и конфигурации без пор и трещин во всех ее частях.
Ковкость – это способность металла или сплава деформироваться с минимальным сопротивлением под влиянием внешней приложенной нагрузки и принимать заданную форму. Ковкость зависит от многих внешних факторов, в частности, от температуры нагрева и схемы напряженного состояния.
Свариваемостью называют способность материала образовывать неразъемные соединения с комплексом свойств, обеспечивающих работоспособность конструкции. По степени свариваемости материалы подразделяют на: хорошо и ограниченно свариваемые. Свариваемость зависит как от материала свариваемых заготовок, так и от выбранного технологического процесса сварки.
Обрабатываемостью называют свойство металла поддаваться обработке резанием. Критериями обрабатываемости являются режимы резания и качество обработанной поверхности.
Технологические свойства часто определяют выбор материала для конструкции. Разрабатываемые материалы могут быть внедрены в производство только в том случае, если их технологические свойства удовлетворяют необходимым требованиям. Показатели технологических свойств определяют специальными испытаниями на ковкость, обрабатываемость, свариваемость, а также литейными пробами.
Работоспособность конструкции определяется эксплуатационными или служебными характеристиками материалов, применяемых для их изготовления. В зависимости от условий эксплуатации и рабочей среды к машиностроительным материалам помимо прочностных характеристик можно предъявлять и такие требования, как жаропрочность, то есть сохранение высоких механических характеристик при высоких температурах; коррозионная стойкость при работе в различных агрессивных средах; повышенная износостойкость, необходимая, если детали в процессе работы подвергаются истиранию, и т. п. Износостойкость – свойство материала оказывать сопротивление изнашиванию в определенных условиях трения.
К физико-химическим свойствам материалов относятся температура плавления, плотность, электро- и теплопроводность, коэффициенты линейного и объемного расширения, способность к химическому взаимодействию с агрессивными средами, а также антикоррозионные свойства. Перечисленные свойства во многом определяются химическими свойствами компонентов сплава и их структурой.
В некоторых случаях материалы должны обладать способностью образовывать неразъемные соединения с помощью сварки либо пайки с другими материалами, в частности, с керамикой, графитом и др.
Следовательно, при выборе материала для создания технологичной конструкции необходимо комплексно учитывать его прочностные, технологические и эксплуатационные характеристики.