Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции (для печати).docx
Скачиваний:
179
Добавлен:
06.03.2016
Размер:
2.47 Mб
Скачать

Числовые характеристики дискретных случайных величин

Закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться числами, которые описывают случайную величину суммарно. Такие числа называют числовыми характеристиками случайной величины. К ним относятся: математическое ожидание, дисперсия.

Математическое ожидание дискретной случайной величины

Математическим ожиданием дсв называют сумму произведений всех её возможных значений на их вероятности и обозначается .

Если дсв задана законом распределения

, то

Пусть произведено испытаний, в которых случайная величинапринялараз значение,раз значение, …,раз значение, причём++…+=. Тогда сумма всех значений, принятых, равна. Найдём среднее арифметическоевсех значений. Итак, . Вероятностный смысл полученного результата таков: математическое ожидание приближённо равно среднему арифметическому наблюдаемых значений случайной величины.

Математическое ожидание обладает следующими свойствами:

  1. Математическое ожидание постоянной величины равно самой постоянной, т.е.

В самом деле, постоянную можно рассмотреть как дискретную случайную величину, которая имеет одно возможное значение и принимает его с вероятностью.

  1. Постоянный множитель можно выносить за знак математического ожидания, т.е. .

.

  1. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т.е.

Если , то

  1. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых, т.е. .

Если , то

+

, т.к. .

  1. Математическое ожидание числа появлений события А в независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытаний, т.е.

Дисперсия дискретной случайной величины

Математическое ожидание, или среднее значение, случайной величины в ряде вопросов является достаточной характеристикой изучаемой случайной величины. Но бывает так, что одно среднее значение не даёт практически исчерпывающей характеристики случайной величины, а требуется ещё знать, сколь велики отклонения отдельных значений случайной величины от её математического ожидания.

Например, по данным статистического наблюдения изучается: средний рост или вес человека в определённой группе. Результаты опыта или наблюдения может считаться удачным, если возможные значения случайной величины незначительно отличаются от математического ожидания. Поэтому возникает необходимость введения ещё понятия отклонения случайной величины от её математического ожидания.

Отклонением называют разность между случайной величиной и её математическим ожиданием: .

Это отклонение характеризует рассеяние случайной величины. На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их среднее значение, т.е. математическое ожидание отклонения.

Покажем, что математическое ожидание отклонения равно нулю. В самом деле . Это объясняется тем, что одни возможные отклонения положительны, а другие – отрицательны; в результате их взаимного погашения среднее значение отклонения равно нулю. Эти соображения говорят о целесообразности заменить возможные отклонения их абсолютными значениями или их квадратами. В случае замены абсолютными значениями приходится оперировать с абсолютными величинами, что приводит иногда к серьёзным затруднениям. Поэтому чаще всего идут по другому пути, вычисляют среднее значение квадрата отклонения, которое и называют дисперсией.

Дисперсией дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от её математического ожидания и обозначают . Таким образом:

При решении практических задач часто пользуются немного видоизменённой формулой дисперсии, а именно: . При преобразовании было учтено, что математическое ожидание есть постоянная величина, а значит,есть также постоянные величины. Итак,

Дисперсия обладает следующими свойствами:

  1. Дисперсия постоянной величины равна нулю, т.е. .

В самом деле .

.

  1. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат, т.е. .

В самом деле .

.

  1. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин, т.е.

  1. Дисперсия разности двух независимых случайных величин равна сумме их дисперсии, т.е.

  1. Дисперсия числа появления события А в независимых испытаниях, в каждом из которых вероятностьпоявления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании, т.е..

.

Среднее квадратическое отклонение

Для оценки рассеяния возможных значений случайной величины вокруг её среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относится среднее квадратическое отклонение.

Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии и обозначается σ(:

.

Легко показать, что дисперсия имеет размерность, равную квадрату размерности случайной величины. Так как среднее квадратическое отклонение равно квадратному корню из дисперсии, то размерность σ(совпадает с размерностью случайной величины. Поэтому в тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют среднее квадратическое отклонение, а не дисперсию.

Функция распределения вероятностей случайной величины

Дискретная случайная величина может быть задана перечнем всех её возможных значений и их вероятностей. Такой способ задания не является общим: он не применим, например, для непрерывных случайных величин, так как в этом случае не предоставляется возможным перечислить все возможные значения. Поэтому вводят понятие функции распределения вероятностей случайной величины.

Пусть – действительное число. Вероятность события, состоящего в том, что Х примет значение, меньшее, т.е. вероятность события, обозначим через.

Функцией распределения называется функция , определяющая вероятность того, что случайная величинв результате испытания примет значение, меньшее, т.е.

.

Функция распределения обладает следующими свойствами:

  1. .

  2. Если , то.

В самом деле, пусть . Событие, состоящее в том, чтопримет значение, меньшее, можно подразделить на два несовместных события:примет значение, меньшееипримет значение, удовлетворяющее неравенствут.е.). По теореме сложения имеем:), откуда

) или . Т.к. любая вероятность есть число неотрицательное, тоили.

Если и, то. Таким образом, вероятность того, что случайная величина примет значение, заключённое в интервале, равна приращению функции распределения на этом интервале:

  1. Если возможные значения случайной величины принадлежат интервалу , то

а) , б). График функции распределения непрерывной случайной величины имеет вид: