Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоргалки к Госам 2008.doc
Скачиваний:
349
Добавлен:
01.03.2016
Размер:
2.89 Mб
Скачать

32. Систематические погрешности обработки и их учёт при анализе и управлении точностью обработок.

Систематическая погрешность обработки – погрешность, которая для всех заготовок рассматриваемой партии остается постоянной или закономерно изменяется при переходе от одной обрабатываемой заготовки к следующей; делятся на: 1. переменные 2. постоянные. Причины переменных систематических погрешностей: 1. неточность, износ и деформация станков, приспособлений, инструментов 2. деформация обрабатываемых заготовок 3. тепловые явления происходящие в технологической системе 4. погрешность теоретической схемы обработки. Погрешность изготовления станков определяет ГОСТ, в котором оговорены допуски и методы проверки геометрической точности станков в ненагруженном состоянии. Геометрическая погрешность переносится на обрабатываемые детали в виде систематической погрешности, которая может быть рассчитана и систематизирована. Не параллельность в горизонтальной плоскости приводит к конусности обрабатываемой поверхности; не параллельность в вертикальной плоскости приводит к получению обрабатываемой поверхности в виде гиперболоида. Главной причиной потери точности станка является износ направляющих. Износ направляющих приводит к перекосу суппорта и увеличению диаметра обрабатываемой поверхности, неравномерность износа по длине направляющих приводит к погрешности формы детали. Деформация станков при их неправильном монтаже, а также под действием массы или оседания фундамента вызывает дополнительные систематические погрешности. Погрешность связанная с износом и неточностью режущего и измерительного инструмента полностью переносится на обрабатываемую деталь, обуславливая систематическую погрешность. Так как износ режущего инструмента обратно пропорционален подачи, увеличение подачи повышает размерную стойкость инструмента и точность обработки. Применение широких резцов с выглаживающими фасками повышает точность при росте производительности. Изменение глубины резания влияет на износ инструмента незначительно. Значительное влияние на износ оказывает задний угол резца, с его увеличением растет износ, так как ослабляется режущая кромка и ухудшаются условия тепло отвода. Точность обработки может быть повышена выбором рациональной конструкции и материла режущего инструмента, подбором режимов резания. Погрешность связанная с закреплением деталей: усилия закрепления деталей в приспособлениях и усилия резания вызывают упругую деформации обрабатываемых деталей и порождают погрешность формы обрабатываемой детали. Причиной погрешности могут быть центробежные силы, силы тяжести, остаточные напряжения. Перечисленные деформации заготовок служат источником возникновения систематических погрешностей геометрической формы деталей. Погрешность связанная с температурными деформациями технологической системы вызывается следующими причинами: 1. нагрев теплом выделяющимся в зоне резания 2. нагрев теплом выделяющимся при трении движущихся частей технологической системы 3. не постоянство температуры помещения. При анализе температурных деформаций технологической системы рассматривают температурную деформацию ее элементов. Температурная деформация станков является следствием потерь на трение в механизмах станка, гидроприводах, электроустановках; теплопередача от охлаждающей жидкости, нагрев от внешних источников. Большое влияние на точность оказывает нагрев шпиндельной бабки, который вызывает ее смещение. Температура достигает максимума в местах расположения подшипников в шпинделе и быстроходных валов. Продолжительность нагрева передней бабки сопровождающегося ее смещением составляет 3 – 5 часов, после чего ее температура стабилизируется. Температурная погрешность зависит от частоты вращения шпинделя. Температурная деформация режущего инструмента является следствием перехода части тепла выделяющегося в зоне резания в инструмент. При токарной обработке температурная деформация режущего инструмента обусловлена удлинением резца, которое стабилизируется в зависимости от режимов резания, материала и конструкции резца через 20 – 30 минут непрерывной работы. До наступления теплового равновесия удлинение резца сопровождается изменением формы поверхности обрабатываемой детали. При ритмичной работе температурные деформации постоянны ( происходит удлинение и укорочение резца ); при неритмичной работе – переменны, что приводит к рассеиванию размеров. Температурная деформация детали является следствием перехода части тепла выделяющегося в зоне резания в обрабатываемую деталь. Нагрев обрабатываемой детали зависит от режимов резания: при увеличении скорости и подачи количество тепла уносимого со стружкой возрастает, т.е. температура понижается; при увеличении глубины температура возрастает. Расчет погрешности обработки сложен, так как температура обрабатываемой детали не равномерна по длине.