
- •А.А. Силич, т.А. Миронова, ф.В. Авдощенко
- •Введение
- •Глава 1. Метод проецирования
- •1.1. Центральная проекция
- •1.2. Параллельная проекция
- •1.2.1. Свойства параллельных проекций
- •1.3. Показатели искажения
- •1.4. Аксонометрические проекции
- •Изображения точки
- •Рис 1.11. Аксонометрическое изображение модели
- •1.4.1.Направление аксонометрических осей и показатели
- •1.4.2. Построение окружности в аксонометрических проекциях
- •Глава 2. Точка, прямая, плоскость
- •2.1. Ортогональные проекции точки
- •2.1.1. Безосный эпюр
- •Б) на две плоскости проекции; в) безосный
- •2.2. Ортогональные проекции прямой
- •2.2.1. Прямые частного положения
- •Рис 2.4 Прямые частного положения
- •Рис 2.5 Проекция прямой частного положения
- •2.3. Взаимное положение прямых линий
- •А) параллельные; б) пересекающиеся; в) скрещивающиеся
- •2.3.1. Конкурирующие точки
- •2.4. Проекции плоских углов
- •2.4.1. Теорема о проекциях прямого угла
- •А) на фронтальной плоскости проекции; б) на горизонтальной плоскости проекции
- •Рис 2.12 Проекция прямого угла
- •2.5. Ортогональные проекции плоскости
- •А) в диметрии; б) на эпюре
- •2.5.1. Прямая и точка в плоскости
- •А) заданной прямоугольником; б) заданной следом
- •А) в диметрии; б) на эпюре
- •3.3. Пересечение плоскости с прямой общего положения
- •3.4 Взаимное пересечение плоскостей общего положения
- •Рис 3.6. Построение линии пересечения двух плоскостей, не имеющих общих точек
- •3.5. Прямая, параллельная плоскости
- •3.6. Параллельные плоскости
- •3.7. Прямая, перпендикулярная плоскости
- •3.8. Взаимно перпендикулярные плоскости
- •Рис 3.12 Взаимно перпендикулярные плоскости
- •Глава 4. Способы преобразования чертежа
- •4.1. Способ замены плоскостей проекций
- •Преобразование чертежа точки и прямой
- •Рис 4.2. Преобразование чертежа точки на эпюре
- •Рис 4.3. Преобразование чертежа прямой
- •Рис 4.4. Определение натуральной длины отрезка а) и угла α; б) и угла β
- •Рис 4.5. Преобразование чертежа
- •Рис 4.7. Преобразование плоскости общего положения
- •Рис 4.8. Преобразование горизонтально проецирующей плоскости в плоскость уровня
- •Рис 4.9. Преобразование плоскости общего положения в плоскость уровня
- •Рис 4.10. Вращение точки вокруг оси в диметрии
- •Рис 4.11. Вращение точки вокруг оси на юпюре
- •4.2.2. Вращение без указания осей на чертеже –
- •Способом плоскопараллельного перемещения
- •4.2.3. Способ вращения вокруг линии уровня
- •A) б)
- •Глава 5. Многогранники
- •5.1. Общие положения
- •Г) призма усеченная
- •Грани вcc’в’
- •Грани авв’а’
- •Грани sвс
- •5.2. Пересечение многогранников плоскостью
- •Положения и определение натуральной величины сечения
- •5.3. Пересечение многогранников с прямой линией
- •С пирамидой
- •5.4. Взаимное пересечение многогранников
- •5.5. Развертки многогранников
- •Усеченной призмы
- •Глава 6. Кривые линии
- •6.1. Основные определения и проекции кривых
- •6.2. Пространственные кривые
- •Глава 7. Кривые поверхности
- •7.1. Общие сведения
- •7.2. Поверхности вращения
- •7.3. Пересечение поверхности вращения плоскостью
- •7.3.1. Цилиндр. Возможные сечения
- •7.3.2. Конус. Возможные сечения
- •7.3.3. Пересечение поверхности вращения с плоскостью
- •Положения заданной прямыми линиями ав и вс
- •7.4. Пересечение поверхности вращения с прямой линией
- •7.5. Взаимное пересечение поверхностей
- •7.5.1. Способ вспомогательных секущих плоскостей
- •7.5.2. Способ вспомогательных сферических поверхностей
- •7.6. Развертка поверхности вращения
- •7.7. Развертываемые и косые поверхности
- •7.7.1. Линейчатые развертываемые поверхности.
- •Заключение
- •Список литературы
- •Содержание
- •Глава 3. Относительное положение прямой и
2.5. Ортогональные проекции плоскости
Плоскость представляет собой множество точек, которые при проецировании в общем случае покроют всю плоскость проекций, не давая на ней изображения. Поэтому плоскость в пространстве на проекциях определяют расположенные в ней элементы.
Рис. 2.14. Задание плоскости на эпюре
Такими элементами, определяющими плоскость, могут быть: три точки не лежащие на одной прямой (Рис.2.14а), прямой и не принадлежащей ей точки (Рис.2.14б), две параллельные прямые (Рис.2.14в), две пересекающиеся прямые (Рис.2.14г), плоская фигура (Рис.2.14д).
Кроме этого плоскость может быть задана следами (Рис.2.15а, б).
Рис. 2.15. Задание плоскости следами:
А) в диметрии; б) на эпюре
Прямые, по которым данная плоскость пересекается с плоскостями проекций называются следами плоскости. Рн – горизонтальный след, Рv – фронтальный след и Рw – профильный след.
Точки РX, РY, РZ называются точками схода следов.
2.5.1. Прямая и точка в плоскости
Задание плоскости на чертеже любым из перечисленных способов единственным образом определяет проекции всех точек и прямых, принадлежащих плоскости.
Прямая CD, проходящая через две точкиC и D, лежащие в плоскости, заданной прямымиАВиCD, принадлежит этой плоскости (рис.2.16).
Рис. 2.16. Принадлежность прямой плоскости
Точка принадлежит плоскости, если через нее можно провести в этой плоскости прямую. Если точка М принадлежит плоскости АВС (Рис.2.17а, б), то по одной заданной проекции Мн можно определить другую проекцию Мv и притом единственную.
Рис. 2.17. Принадлежность точки плоскости:
А) заданной прямоугольником; б) заданной следом
Для этого через точку М (Мн) проведем какую-либо прямую АN (AнNн), принадлежащую данной плоскости; по линиям связи найдем вторую проекцию прямой (АvNv) и на ней соответствующую точку Мv.
В качестве такой вспомогательной прямой часто берут линии уровня, лежащие в данной плоскости.
2.5.2. Особые линии плоскости
К особым линиям плоскости относятся горизонталь плоскости, фронталь плоскости и линии наибольшего наклона к плоскости Н (линия ската).
Горизонталь плоскости – это прямая, лежащая в плоскости и параллельная плоскости Н (Рис.2.18а, б).
Рис 2.18 Горизонталь плоскости
Фронталь плоскости – прямая, лежащая в плоскости и параллельная плоскости V (Рис.2.19а, б).
Рис 2.19 Фронталь плоскости
Линия ската S плоскости – это прямая, лежащая в плоскости и перпендикулярная к горизонтали плоскости (Рис.2.20а, б). Линия ската определяет угол наклона плоскости к плоскости проекции Н.
Рис. 2.20 Линии ската плоскости:
а)S =ВК в плоскости АВС;
б) S=АВ в плоскости заданной следами РVи РH
Плоскость на чертеже может быть задана линией ската и горизонталью (как двумя пересекающимися прямыми). Этот способ является рациональным, т.к. достаточно задать положение линии ската, а горизонталь строится перпендикулярно к ней.
2.5.3. Плоскости общего положения
Плоскости не параллельные и не перпендикулярные ни одной из плоскостей проекций называются плоскостями общего положения. Такие плоскости изображены на рис. 2.14а, б, в, г, д.
2.5.4. Плоскости частного положения
К плоскостям частного положения относятся плоскости, перпендикулярные плоскостям проекций – проецирующие плоскости.
Такая плоскость проецируется в прямую линию на ту плоскость проекций, к которой она перпендикулярна. На этой прямой лежат проекции всех точек, линий и фигур, принадлежащих данной проецирующей плоскости (Рис.2.21а, б).
Проецирующая плоскость вполне определяется той своей проекцией, на которой она проецируется в линию (Рис.2.22а, б, в).
Рис. 2.21. Проецирующая плоскость: