
- •А.А. Силич, т.А. Миронова, ф.В. Авдощенко
- •Введение
- •Глава 1. Метод проецирования
- •1.1. Центральная проекция
- •1.2. Параллельная проекция
- •1.2.1. Свойства параллельных проекций
- •1.3. Показатели искажения
- •1.4. Аксонометрические проекции
- •Изображения точки
- •Рис 1.11. Аксонометрическое изображение модели
- •1.4.1.Направление аксонометрических осей и показатели
- •1.4.2. Построение окружности в аксонометрических проекциях
- •Глава 2. Точка, прямая, плоскость
- •2.1. Ортогональные проекции точки
- •2.1.1. Безосный эпюр
- •Б) на две плоскости проекции; в) безосный
- •2.2. Ортогональные проекции прямой
- •2.2.1. Прямые частного положения
- •Рис 2.4 Прямые частного положения
- •Рис 2.5 Проекция прямой частного положения
- •2.3. Взаимное положение прямых линий
- •А) параллельные; б) пересекающиеся; в) скрещивающиеся
- •2.3.1. Конкурирующие точки
- •2.4. Проекции плоских углов
- •2.4.1. Теорема о проекциях прямого угла
- •А) на фронтальной плоскости проекции; б) на горизонтальной плоскости проекции
- •Рис 2.12 Проекция прямого угла
- •2.5. Ортогональные проекции плоскости
- •А) в диметрии; б) на эпюре
- •2.5.1. Прямая и точка в плоскости
- •А) заданной прямоугольником; б) заданной следом
- •А) в диметрии; б) на эпюре
- •3.3. Пересечение плоскости с прямой общего положения
- •3.4 Взаимное пересечение плоскостей общего положения
- •Рис 3.6. Построение линии пересечения двух плоскостей, не имеющих общих точек
- •3.5. Прямая, параллельная плоскости
- •3.6. Параллельные плоскости
- •3.7. Прямая, перпендикулярная плоскости
- •3.8. Взаимно перпендикулярные плоскости
- •Рис 3.12 Взаимно перпендикулярные плоскости
- •Глава 4. Способы преобразования чертежа
- •4.1. Способ замены плоскостей проекций
- •Преобразование чертежа точки и прямой
- •Рис 4.2. Преобразование чертежа точки на эпюре
- •Рис 4.3. Преобразование чертежа прямой
- •Рис 4.4. Определение натуральной длины отрезка а) и угла α; б) и угла β
- •Рис 4.5. Преобразование чертежа
- •Рис 4.7. Преобразование плоскости общего положения
- •Рис 4.8. Преобразование горизонтально проецирующей плоскости в плоскость уровня
- •Рис 4.9. Преобразование плоскости общего положения в плоскость уровня
- •Рис 4.10. Вращение точки вокруг оси в диметрии
- •Рис 4.11. Вращение точки вокруг оси на юпюре
- •4.2.2. Вращение без указания осей на чертеже –
- •Способом плоскопараллельного перемещения
- •4.2.3. Способ вращения вокруг линии уровня
- •A) б)
- •Глава 5. Многогранники
- •5.1. Общие положения
- •Г) призма усеченная
- •Грани вcc’в’
- •Грани авв’а’
- •Грани sвс
- •5.2. Пересечение многогранников плоскостью
- •Положения и определение натуральной величины сечения
- •5.3. Пересечение многогранников с прямой линией
- •С пирамидой
- •5.4. Взаимное пересечение многогранников
- •5.5. Развертки многогранников
- •Усеченной призмы
- •Глава 6. Кривые линии
- •6.1. Основные определения и проекции кривых
- •6.2. Пространственные кривые
- •Глава 7. Кривые поверхности
- •7.1. Общие сведения
- •7.2. Поверхности вращения
- •7.3. Пересечение поверхности вращения плоскостью
- •7.3.1. Цилиндр. Возможные сечения
- •7.3.2. Конус. Возможные сечения
- •7.3.3. Пересечение поверхности вращения с плоскостью
- •Положения заданной прямыми линиями ав и вс
- •7.4. Пересечение поверхности вращения с прямой линией
- •7.5. Взаимное пересечение поверхностей
- •7.5.1. Способ вспомогательных секущих плоскостей
- •7.5.2. Способ вспомогательных сферических поверхностей
- •7.6. Развертка поверхности вращения
- •7.7. Развертываемые и косые поверхности
- •7.7.1. Линейчатые развертываемые поверхности.
- •Заключение
- •Список литературы
- •Содержание
- •Глава 3. Относительное положение прямой и
Рис 4.4. Определение натуральной длины отрезка а) и угла α; б) и угла β
Решение. На рис.4.4а выполнена замена фронтальной плоскости проекций V новой плоскостью V1 проекция которой параллельна горизонтальной проекции отрезка АВ, поэтому плоскость V параллельна отрезку. Линии связи перпендикулярны новой оси Х1. От новой оси на линиях связи отложены отрезки, равные расстояниям фронтальных проекций АV и ВV точек до оси Х. В новой системе V1/H отрезок АВ преобразовался во фронталь.
На рис.4.4б, показано решение этой же задачи, если отрезок АВ преобразовать в новой системе V/H1 в горизонталь.
Задача: Преобразовать прямую общего положения в проецирующую (рис.4.5).
Решение. Для того, чтобы прямая общего положения в новой системе плоскостей проекций стала проецирующей, нужно последовательно решить рассмотренные первую и вторую задачи. Первой заменой преобразовать прямую в линию уровня фронталь. Второй заменой фронталь преобразовать в горизонтально-проецирующую прямую.
Рис 4.5. Преобразование чертежа
Задача: Определить расстояние между двумя параллельными прямыми k и m (рис.4.6).
Рис 4.6. Определение расстояния между прямыми
Решение. Так как m и k фронтали, то заменяем плоскость Н на Н1, причем Н1 берем перпендикулярно прямым m и k, чтобы они стали проецирующими.
Преобразование чертежа плоскости
Задача: Плоскость общего положения преобразовать в проецирующую (рис.4.7).
Решение. Заменим фронтальную плоскость проекцийVнаV1, перпендикулярную к плоскостиНи к плоскости треугольникаАВС. Чтобы плоскостьV1, была перпендикулярна плоскости треугольника, в его плоскости должна быть прямая, перпендикулярная к плоскостиV1. Такая прямая может быть горизонтальА1. Провести новую осьХ1перпендикулярно горизонтальной проекции горизонталиАН 1Н. ТреугольникАВСна плоскостиV1спроецируется в прямую линию, т.е. станет фронтально-проецирующим. Угол между нею и осьюХ1определит угол наклона к горизонтальной плоскости – угол.
Рис 4.7. Преобразование плоскости общего положения
в проецирующую
Задача:Преобразовать проецирующую плоскость в плоскость уровня (рис.4.8).
Рис 4.8. Преобразование горизонтально проецирующей плоскости в плоскость уровня
Решение. Особенностью плоскостей уровня является то, что они проецируются на соответствующей плоскости проекций в натуральную величину. На рис.4.8 дана горизонтально проецирующая плоскость. Заменим плоскость проекцийVнаV1параллельнуюАВСи, следовательно, перпендикулярную к незаменимой плоскостиН. В системеV1/HплоскостьАВСбудет плоскостью уровня, т.е. фронтальной плоскостью, поэтому дает натуральный вид этого треугольника.
Задача:Определить натуральную величину плоскости общего положения, заданную треугольникомАВС (рис.4.9).
Решение. Для того, чтобы преобразовать плоскостьАВС(рис.4.9) общего положения в плоскость уровня в новой системе плоскостей проекций, нужно последовательно решить две предыдущие задачи. Так как треугольникАВСзадает плоскость общего положения, то для определения натуральной величины его следует преобразовать сначала в положение перпендикулярное к какой либо плоскости проекций (проецирующее), а затем, вторым преобразованием, привести в положение плоскости уровня, так как это показано на рис.4.9.
Способ вращения
Сущность этого способа заключается в том, что плоскости проекций остаются неизменными, а изменяется положение геометрического объекта в пространстве вращением вокруг некоторой оси. В качестве оси вращения выбирают или проецирующую прямую, или линию уровня.