Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсова_1 / Звіт загальний статті калориметри.doc
Скачиваний:
4
Добавлен:
23.02.2016
Размер:
8.26 Mб
Скачать

Fig. 149 Коефіцієнт s і загальна радіаційна потужність p, у залежності від ld вхідного струму Il [242]

Обговорення похибки вимірювання [242]. Похибка вимірювання може бути отримана виходячи із рівнянь 3 і 4. Із цього короткого аналізу, похибка вимірювання |δPl/Pl| може бути отримана як:

(5)

де означає часткову похідну. Похибка, спричинена контролем потужності постійного струму калориметром становила 0,16 мкВт. Точність прямого вимірювання струму і напруги становила 104; P'h2 - P'hl = 100 мВт при струмі LD величиною в 60 mA; в останньому доданку рівняння [242]. 5, Ph2 — Phl може бути заміщене P,. Використовуючи такі величини, похибка, що задається рівнянням 5 становитиме

, (мВт) (6)

Якщо здійснюються вимірювання рівня потужності 10 мВт, похибка становить 1-4×10-2. Похибка вимірювання зменшується із зростанням Pl [242].

Отже, розвинутий калориметричний метод вимірювання для абсолютної величини загальної радіаційної потужності від лазерного діода [242]. Точність вимірювання оцінена, як 1-4% при 10 mW рівні потужності. Перевагою цього методу є вимірювання лазерної потужності без фотосенсора і джерело світла може мати довільну довжину хвилі. Метод корисний для вимірювання не тільки потужності LD, але також і потужності інших напівпровідникових джерел світла [242].

ВИСНОВКИ

  1. Спостерігається тенденція до мініатюризації

  • зменшення робочого об’єму – до піколітрів

  • зменшення розміру самих пристроїв – зробити пристрої настільними

  • Вихід на майже граничну чутливість – нанокалориметри

  • Переважна більшість калориметрів є ізотермічними і кондуктивними

  • Загальна автоматизація – зробити пристрій зручним для користувача

  • Конструктивні особливості калориметрів і їх параметри залежать від області їх застосування

  • Підвищення надійності і точності вимірювань

    Список використаної літератури

    1. Takemi INOUE Broadband RF Power Standard for 7 mm Coaxial Waveguide in the Frequency Range of 10 MHz-18 GHz. Design and Fabrication // Bulletin of the Electrotechnical Laboratory, VOL.64;NO.1;PAGE.3-10(2000). 8p.

    2. V. Tydlitát, P. Tesárek and R. Černỳ Effects of the type of calorimeter and the use of plasticizers and hydrophobizers on the measured hydration heat development of fgd gypsum // Journal of Thermal Analysis and Calorimetry, Vol. 91 (2008) 791–796

    3. Flor Siperstein, Raymond J. Gorte, and Alan L. Myers A new calorimeter for simultaneous measurements of loading and heats of adsorption from gaseous mixtures // Langmuir 1999, 15, 1570-1576

    4. Lars Wadsö, Allan L. Smith, Hamid Shirazi, and S. Rose Mulligan, Thomas Hofelich, The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology // Journal of Chemical Education • Vol. 78 No. 8 August 2001, pp. 1080 – 1086

    5. Hideaki Chihara, Tooru Atake, and Masahiko Ihisashi A simple conduction-type calorimeter // Netsukotei 6(4), 132 – 136 (1979)

    6. Nadja N. Rehak and Donald S. Young Prospective Applications of Calorimetry in the Clinical Laboratory // Clinical chemistry,Vol. 24, No. 8, 1978, pp. 1414 – 1419

    7. D. S. Bracken, R. S. Biddle, and C. R. Rudy Performance evaluation of a commercially available heat flow calorimeter and applicability assessment for safeguarding special nuclear materials // 39 th Annual INMM, Naples, FL, July 26 – 30, 1998 (Full paper), 12 p.

    8. D. A. Barragán, J. A. Ágreda Simulation of the thermal processes in a mass flow heat conduction calorimeter // Instrumentation Science & Technology, 28(1), 43–57 (2000)

    9. The series CR-100 Microcalorimeters provide an accurate measurement of radioisotope heat release rates. // CR-100 7” Thermoelectric Enclosure, International thermal instrument company, ‑ 4 p.

    10. Lars Wadsö, Allan L. Smith, Hamid Shirazi, and S. Rose Mulligan, Thomas Hofelich, The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology // Journal of Chemical Education • Vol. 78 No. 8 August 2001, pp. 1080 – 1086

    11. J. L. Hemmerich, L. Serio, and P. Milverton High-resolution tritium calorimetry based on inertial temperature control // Rev. Sci. Instrum. 65 (5), May 1994, pp. 1616 – 1620

    12. Fraunhofer institut für chemische technologie, ICT, Reaction calorimetry in microreactors – 7p.

    13. P. Dantzer and P. Millet, Advances in hydride phase growth: Automatic high precision calorimeter volumetric devices, for thermodynamic and kinetics analyses // Review of Scientific Instruments Volume 71, Number 1 January 2000, pp. 142 – 153

    14. Plotnikov VV, Brandts JM, Lin LN, Brandts JF. 1997. A new ultrasensitive scanning calorimeter. Anal. Biochem. 250:237–44

    15. Privalov G, Kavina V, Freire E, Privalov PL. 1995. Precise scanning calorimeter for studying thermal properties of biological macromolecules in dilute solution. Anal. Biochem. 232:79–85

    16. Hinz H-J, Schwarz FP. 2001. Measurement and analysis of results obtained on biological substances with differential scanning calorimetry. Pure Appl. Chem. 73:745–59

    17. Wiseman T, Williston S, Brandts JF, Lin LN. 1989. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179:131–37

    18. Fisher HF, Singh N. 1995. Calorimetric methods for interpreting protein-ligand interactions. Methods Enzymol. 259:194–221

    19. Indyk L, Fisher HF. 1998. Theoretical aspects of isothermal titration calorimetry. Methods Enzymol. 295:350–64

    20. Tellinghuisen J. 2003. A study of statistical error in isothermal titration calorimetry. Anal. Biochem. 321:79–88

    21. Tellinghuisen J. 2004. Statistical error in isothermal titration calorimetry. Methods Enzymol. 383:245–82

    22. Tellinghuisen J. 2004. Volume errors in isothermal titration calorimetry. Anal. Biochem. 333:405–6

    23. Tellinghuisen J. 2005. Statistical error in isothermal titration calorimetry: variance function estimation from generalized least squares. Anal. Biochem. 343:106–15

    24. PantolianoMW,Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, et al. 2001. Highdensity miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 6:429–40

    25. Waldron TT, Murphy KP. 2003. Stabilization of proteins by ligand binding: application to drug screening and determination of unfolding energetics. Biochemistry 42:5058–64

    26. Carver TE, Bordeau B, Cummings MD, Petrella EC, Pucci MJ, et al. 2005. Decrypting the biochemical function of an essential gene from Streptococcus pneumoniae using ThermoFluor technology. J. Biol. Chem. 280:11704–12

    27. Plotnikov V, Rochalski A, Brandts M, Brandts JF, Williston S, et al. 2002. An autosampling differential scanning calorimeter instrument for studying molecular interactions. Assay Drug Dev. Technol. 1:83–90

    28. Torres FE, Kuhn P, De Bruyker D, Bell AG, Wolkin MV, et al. 2004. Enthalpy arrays. Proc. Natl. Acad. Sci. USA 101:9517–22

    29. Verhaegen K, Van Gerven P, Baert K, Hermans L, Mertens R, Luyten W. 1998. Design of a high-throughput microphysiometer. In Biocalorimetry: Applications of Calorimetry in the Biological Sciences, ed. JE Ladbury, BZ Chowdhry, pp. 227–31. New York:Wiley

    30. Gerd Olofsson, and Watson Loh On the use of Titration Calorimetry to Study the Association of Surfactants in Aqueous Solutions // J. Braz. Chem. Soc., Vol. 20, No. 4, 577-593, 2009., 17р.

    31. Wiseman, T.; Williston, S.; Brandts, J.F.; Lin, L.-N.; Anal. Biochem. 1989, 96, 871.

    32. Russell, D. J.; Hansen, L. D.; Thermochim. Acta 2006, 445, 151.

    33. Suurkuusk, J.; Wadsö, I.; Chem. Scr. 1982, 20, 155.

    34. Bastos, M.; Hägg, S.; Lönnbro, P.; Wadsö, I.; J. Biochem. Biophys. Methods 1991, 23, 255.

    35. Nilsson, S.-O.; Wadsö, I.; J. Chem. Thermodyn. 1984, 16, 317.

    36. Wadsö, I.; Goldberg, R. N.; Pure Appl. Chem. 2001, 73, 1625.

    37. Briggner , L.-E.; Wadsö, I.; J. Biochem. Biophys. Methods 1991, 22, 101; Olofsson, G.; Berling, D.; Markova, N.; Molund, M.; Thermochim. Acta 2000, 347, 31.

    38. P. A. Baisden, P. M. Grant, and W. F. Kinard Development of a high-sensitivity, computer-controlled titration calorimeter // Rev. Sci. Instrum, 58 № 10, October 1987, pp. 1937 – 1941

    39. Mohamed El Harrous, Obdulio L Mayorga and Antonio Parody-Morreale Description of a new Gill titration calorimeter for the study of biochemical reactions. II: operational characterization of the instrument // Meas.Sci.Technol. 5 (1994) 1071-1077. Printed in the UK

    40. G. V. Kotelnikov, S. P. Moiseyeva, E. V. Mezhburd and V. P. Krayev, Method of separating the sensitive volume of calorimetric cells in a differential titration calorimeter // Journal of Thermal Analysis and Calorimetry, Vol. 62 (2000) 39 – 50

    41. G. V. Kotelnikov, A. V. Sidorovich, Vysokomolekulyarnye Soyedineniya, 25 (1983) 2622.

    42. M. Gorman Nordmark, J. Laynez, A. Schon, J. Suurkuusk and I. Wadso, J. Biochem. Biophys. Methods, 10 (1984) 187.

    43. R. B. Spokane and S. J. Gill, Rev. Sci. Instrum., 52 (1981) 1728.

    44. I. R. McKinnon, L. Fall, A. Parody-Morreale and S. J. Gill, Anal. Biochemistry, 139 (1984), 134.

    45. T. Wiseman, S. Williston, J. Brandts and L.-N. Lin, Anal. Biochemistry, 179 (1989) 131.

    46. E. Freire, O. Mayorga and M. Straume, Anal. Chemistry, 62 (1990) 950.

    47. M. El Harrous, S. J. Gill and A. Parody-Morreale, Meas. Sci. Technol., 5 (1994) 1065.

    48. L. Garcia-Fuentes, C. Baron and O. Mayorga, Anal. Chemistry, 70 (1998) 4615.

    49. CSC web page: www.calscorp.com

    50. G. V. Kotelnikov et al., ISBC XI Conference ëBiothermodynamics. Molecular, Organismal and Ecologicalí, 6-10.06.99, Alta, Utah, USA, Program and abstracts, p. 52.

    51. S. S. Kutateladze and V. M. Borishansky, Reference book on heat transfer, Gosenergoizdat, 1959, p. 96.

    52. Mohamed El Harrous, Stanley J Gill and Antonio Parody-Morreale. Description of a new Gill titration calorimeter for the study of biochemical reactions. I: assembly and basic response of the instrument // Meas. SCI Technol. 5 (1994) 1065-1070. Printed m the UK – 6 p.

    53. E. K. Merabet, H. K. Yuen, W. A. Grote and K. L. Deppermann. A high sensi'iivity titration calorimeter using pyroei,ecfric sensor // Journal of Thermal Analysis, Vol. 42 (1994) 895-906

    54. http://www.centrallab.metu.edu.tr/?q=en/node/174

    55. John E. Ladbury. Application of Isothermal Titration Calorimetry in the Biological Sciences: Things Are Heating Up! // BioTechniques, Vol. 37, No. 6 (2004), pp. 885 – 887

    56. Wiseman, T., S. Williston, J.F. Brandts, and L.N. Lin. 1989. Rapid mea-surement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179:131-137.

    57. Freire, E., O.L. Mayorga, and M. Straume. 1990. Isothermal titration calorimetry. Anal. Chem. 62:950-959.

    58. Ladbury, J.E. 1995. Counting the calories to stay in the groove. Structure 3:635-639.

    59. Ladbury, J.E. and B.Z. Chowdhry. 1996. Sensing the heat: the applica-tion of isothermal titration calorimetry to thermodynamic studies of bio-molecular interactions. Chem. Biol. 3:791-801.

    60. Jelasarov, I. and H.R. Bosshard. 1999. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investi-gate the energetics of biomolecular recognition. J. Mol. Recogn. 12:3-18.

    61. Williams, M.A. and J.E. Ladbury. 2004. The extended interface: mea-suring non-local effects in biomolecular interactions. Curr. Opin Struct. Biol. 14:562-569.

    62. Thomson, J.A. and J.E. Ladbury. 2004. Isothermal titration calorimetry: a tutorial. In J.E. Ladbury and M.L. Doyle (Eds.), Biocalorimetry 2. Applica-tions of Calorimetry in the Biological Sciences. John Wiley & Sons, Chich-ester.

    63. Ren, J.S., T.C. Jenkins, and J.B. Chaires. 2000. Energetics of DNA inter-calation reactions. Biochemistry 39:8439-8447.

    64. Bergqvist, S., M.A. Williams, R. O’Brien, and J.E. Ladbury. 2004. Heat capacity effects of water molecules and ions at a protein-DNA inter-face. J. Mol. Biol. 336:829-842.

    65. Spolar, R.S. and M.T. Record, Jr. 1994. Coupling of local folding to site-specific binding of proteins to DNA. Science 263:777-783.

    66. Gomez, J. and E. Freire. 1995 Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin. J. Mol. Biol. 252:337-350.

    67. Morton, C.J. and J.E. Ladbury. 1996. Water mediated protein-DNA interactions: the relationship of thermodynamics to structural detail. Prot. Sci. 5:2115-2118.

    68. Henriques, D.A., J.E. Ladbury, and R.M. Jackson. 2000. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization. Prot. Sci. 9:1975-1985.

    69. Thomson, J., G.S. Ratnaparkhi, R. Varadarajan, J.M. Sturtevant, and F.M. Richards. 1994. Thermodynamic and structural consequences of changing a sulphur atom to a methylene group in the M13Nle muta-tion in ribonuclease S. Biochemistry 33:8587-8593.

    70. Michael J. Blandamer, Paul M. Cullis and Jan B. F. N. Engberts. Titration microcalorimetry // J. Chem. Soc., Faraday T rans., 1998, 94(16), 2261»2267

    71. Masaru Tanokura and Kazuhiro Yamada. Titration Microcalorimetry. Application to Measurements of Heat of Ca2+-Association with Ca2+-Binding Proteins // Netsu Sokutei Netsu Sokutei 11(4) 1984, pp. 157 – 166

    72. Handbook of thermal analysis and calorimetry, By Patrick K. Gallagher, Michael E. Brown, Amsterdam - Boston - London - New York - Oxford - Parissan Diego- San Francisco - Singapore- Sydney- Tokyo, ‑ Vol. 1, 2003, Pp. 602 – 655

    73. J.J. Christensen, R.M. Izatt and L.D. Hansen, Rev. Sci. Instr., 36 (1965), 779.

    74. L.D. Hansen, T.E. Jensen, S. Mayne, D.J. Eatough, R.M. Izatt and J.J. Christensen, J. Chem. Thermodyn., 7 (1975) 919.

    75. L.D. Hansen and R.M. Hart, in P.J. Elving, (Ed.), Treatise on Analytical Chemistry, Part 1, vol. 12, 2nd ed., John Wiley & Sons, New York, 1983, p 135.

    76. L.D. Hansen, E.A. Lewis and D.J. Eatough, in K. Grime (Ed.), Analytical Solution Calorimetry, John Wiley & Sons, New York, 1985, pp 57-95.

    77. D.J. Eatough, E.A. Lewis and L.D. Hansen, in K. Grime (Ed.), Analytical Solution Calorimetry, John Wiley & Sons, New York, 1985, p 137.

    78. L.D. Hansen and E.A. Lewis, J. Chem. Thermodyn., 3 (1971) 35.

    79. L.D. Hansen, T.E. Jensen and D.J. Eatough, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, New York, 1980, p 453.

    80. J.J. Christensen, J.W. Gardner, D.J. Eatough, R.M. Izatt, P.J. Watts and R.M. Hart, Rev. Sci. Instr., 44 (1973) 481.

    81. D.J. Eatough, J.J. Christensen and R.M. Izatt, J. Chem. Thermodyn., 7, (1975) 417.

    82. T. Wiseman, S. Williston, J.F. Brandts and L.-N. Lin, Anal. Biochem., 179, (1989) 131.

    83. I.R. McKinnon, L. Fall, A. Parody-Morreale and S. Gill, Anal. B iochem., 139 (1984) 134.

    84. T. Wiseman, S. Williston, J.F. Brandts and L.-N. Lin, Anal. Biochem., 179, (1989) 131.

    85. E. Friere, O.L. Mayorga and M. Straume, Anal. Chem., 62 (1990) 950A.

    86. I. Wadsö, in K.N. Marsh and P.A.G. O'Hare (Eds.), Experimental Thermodynamics, Vol. IV, Solution Calorimetry, B lackwell, Oxford, 1994, p.267.

    87. Tan Zhicheng, Zhang Jibiao, Meng Shuanghe and LI Li A small sample-size automated adiabatic calorimeter from 70 to 580 K. – molar heat capacities of α-Al2O3. Science in China (Series B) Vol. 42, No. 4, August 1999, pp. 382 – 390

    88. D. A. Kyser and R. I. Masei Design of a calorimeter capable of measuring heats of adsorption on single – crystal surfaces // Rev. Sci. Instrum. 58 (11), November, 1987, pp. 2141 – 2144

    89. P. A. Baisden, P. M. Grant, and W. F. Kinard Development of a high-sensitivity, computer-controlled titration calorimeter // Rev. Sci. Instrum, 58 № 10, October 1987, pp. 1937 – 1941

    90. М. Ю. Ефремов, А. Ф. Бацулин, Г. Б. Сергеев. Низкотемпературный пленочный дифференциальный сканирующий калориметр для исследования конденсатов // Весн. Моск. Ун-та, сер. 2, Химия, 1999, Т. 40, №3, стр. 194 – 197.

    91. Perkins Elmer Precisely, Jade DSC, Differential scanning calorimeter: reliability at it’s best. // www.perkinelmer.com

    92. S. Yuan & K. R. Diller, Short communication: An optical differential scanning calorimeter cryomicroscope // Journal of Microscopy, Vol. 218, Pt 2 May 2005, pp. 85–93

    93. O’Neill, M.J. & Watson, E.S. (1964) A differential scanning calorimeter for quantitative differential thermal analysis. Anal. Chem. 36, 1238–1244.

    94. Li Wang, Yongjun Zhao, Eunice Ng, and Qiao Lin, A MEMS differential calorimeter for biomolecular characterization // 18th IEEE International Conference on. Micro Electro Mechanical Systems, 2005. MEMS 2005., pp. 814 – 817

    95. F. Sommer, Modern methods in high temperature calorimetry // Journal of Thermal Analysis, Vol. 33. (1988) 15-28

    96. F. Sommer, J. Schott and B. Predel, Z. Metallkde., 76(1985)369.

    97. A. Le Bail, D. Chevalier, J. M. Chourot and J. Y. Monteau High pressure calorimetry, Comparison of two systems (differential vs. single cell) Application to the phase change of water under pressure // Journal of Thermal Analysis and Calorimetry, Vol. 66 (2001) 243 – 253

    98. J. M. Chourot, A. LeBail and D. Chevalier, High Pressure Research, 19 (2000) 191.

    99. J. M. Chourot, Contribution à l’étude de la décongélation sous haute pression, etude expérimentale et modélisation, Nantes-France: Nantes 1997, p. 151.

    100. D. K. Steckler, R. N. Goldberg, Y. B. Tewari, and T. J. Buckley High Precision Microcalorimetry: Apparatus, Procedures, and Biochemical Applications // Journal of Research of the National Bureau of Standards, Volume 91 Number 3 May-June 1986, pp. 113 – 121

    101. Prosen, E. J.; P. W. Brown, G. Frohnsdorff, and F. Davis, A Multichambered Microcalorimeter for the In¬vestigation of Cement Hydration, Cement Concrete Res. 15, 703 (1985).

    102. Brown, H. D., ed„ Biochemical Microcalorimetry, New York: Academic Press (1969).

    103. Beezer, A. E., ed., Biological Microcalorimetry, New York: Academic Press (1980)

    104. Prosen, E. J., Design and Construction of the NBS Clini¬cal Microcalorimeter, NBS Report 73-179, Washington DC: Natl. Bur. Stand. (1973).

    105. Calvet, E., and H. Prat, Recent Progress in Mi-crocalorimetry, edited and translated from the French by H. A. Skinner, New York: The MacMillan Company (1963).

    106. J. Y. Monteau and J. M. Chourot. Inverse filtering applied to the deconvolution of calorimetric signal, in CESAí98. Nabeull-Hammamet-Tunisie 1998.

    107. A. H. Fuchs, P. Pruzan and L. TerMinassian, J. Phys. Chem. Solids, 40 (1979) 369.

    108. S. L. Randzio and J. P. Grollier, Rev. Sci. Instrum., 65 (1994) 960.

    109. P. W. Bridgman, Proceedings of the American Academy of Arts and Sciences, 47 (1912-b) 411.

    110. B. Predel and G. Oehme, Z. Metallkde., 67 (1976)826.

    111. 8 С J. Rosa, N. Rupf-Bolz, F. Sommer and B. Predel, Z. Metallkde., 71 (1980) 320.

    112. F. Sommer, R. Luck, N. Rupf-Bolz and B. Predel, Mat. Res. Bull., 8 (1983) 621.

    113. F. Sommer, Z. Metallkde., 70 (1979) 359.

    114. R. Luck and B. Predel, Z. Metallkde., 76 (1985)685.

    115. M. G. Frohberg and G. Betz, Ber. Bunsenges. Phys. Chem., 87(1983)782.

    116. Goldberg, R. N., Thermodynamics of Hexokinase-Catalyzed Reactions. Biophys. Chem. 3, 192 (1975).

    117. Goldberg, R. N-, Thermodynamics of Hexokinase-Cata-lyzed Reactions. II. Measurement and calculation of enthalpies of reaction as a function of magnesium ton concentration. Biophys. Chem. 4, 215 (1976).

    118. Tewari, Y. В., and R. N. Goldberg, Thermodynamics of the Conversion of Aqueous Glucose to Fructose. J. Solu¬tion Chem. 13, 523 (1984).

    119. Tewari, Y. В.; D. K. Steckler, and R. N. Goldberg, Ther¬modynamics of the Conversion of Aqueous Xylose to Xy¬lulose. Biophys. Chem. 22, 181 (1985).

    120. Tewari, Y. В., and Goldberg, R. N., An Investigation of the Equilibria Between Aqueous Ribose, Ribulose, and Arabinose. Biophys. Chem. 22, 197 (1985).

    121. Gajewski, E-; D. K. Steckler, and R. N. Goldberg, Ther¬modynamics of the Conversion of Fumarate to L-(-) Malate. Biophys. Chem. 22, 187 (1985).

    122. Goldberg, R. N.; Gajewski, D. K. Steckler, and Y. B. Tewari, Thermodynamics of the Conversion of Aqueous L-Aspartic Acid to Fumaric Acid and Ammonia, Bio¬phys. Chem., in press.

    123. Gajewski, E.; D. K. Steckler, and R. N. Goldberg, The Enthalpy of Hydrolysis of Adenosine 5'-triphosphate to Adenosine 5'-diphosphate, in review.

    124. Emil Vremera, Luciano Brunetti, Luca Oberto and Marco Sellone Measurement algorithms in microcalorimeter techniques at microwave frequencies // 16th IMEKO TC4 Symposium Exploring New Frontiers of Instrumentation and Methods for Electrical and Electronic Measurements, Sept. 22-24, 2008, Florence, Italy, 6p.

    125. Fantom A., Radiofrequency & microwave power measurement, Peter Peregrinus Ltd., England, 1990.

    126. Brunetti L., Vremera E., “A new microcalorimeter for measurements in 3.5-mm coaxial line”, IEEE Transaction on Instrumentation and Measurement, vol. 52, no. 2, pp. 320 - 323, 2003.

    127. Ascroft J., “Developments in Coaxial Power Standards at NPL”, IEEE Transaction on Instrumentation and Measurement, vol. 48, no. 2, pp 647 – 649, 1999.

    128. Brunetti L., Vremera E., “New calibration method for microcalorimeters”, IEEE Transaction on Instrumentation and Measurement, vol. 54, no. 2, pp. 684-687, 2005.

    129. Vremera E. et al., “Alternative Procedures in Realizing of the High Frequency Power Standards with Microcalorimeter and Thermoelectric Power Sensors”, 10.1016/j.measurement.2008.06.010, in press.

    130. Clague F., “A Method to Determine the Calorimetric Equivalence Correction for a Coaxial Microwave Microcalorimeter”, IEEE Transaction on Instrumentation and Measurement, vol. 43, no. 3, pp 421 – 425, 1994.

    131. * * * EA – 4/02: Expression of the Uncertainty of Measurement in Calibration, 1999.

    132. Hollway D. and Muller W., “The Precise Measurement of RF Power and Voltage Using Coaxial Calorimeters and Microcalorimeters”, IEEE Transaction on Instrumentation and Measurement, vol. IM-33, no. 4, pp 269 – 275, 1984.

    133. Rietto G., “Long-term Efficiency Measurements on Bolometer Mounts”, IEEE Transaction on Instrumentation and Measurement, vol. IM-23, no. 4, pp 420 – 422, 1974.

    134. Yoshinobu Okano and Takeumi Inoue, “Automatic Microcalorimeter System for Broadband Power Measurement in 75 GHz – 110 GHz Range”, IEEE Transaction on Instrumentation and Measurement, vol. 50, no. 2, pp 385 – 388, 2001.

    135. Meijer G.C.M. and Herwaarden A.W. (Editors), Thermal Sensors, Institute of Physics Publishing, Bristol, 1994.

    136. Etter M. D. et al., Introduction to MATLAB 7, Pretince Hall, 2005.

    137. Brunetti L. et al., “Thermoelectric Sensors as Microcalorimeters Load”, IEEE Transaction on Instrumentation and Measurement, vol. 56, no. 6, pp. 2220 – 2224, 2007.

    138. Gladius Lewis, A. U. (Dan) Daniels Use of Isothermal Heat-Conduction Microcalorimetry (IHCMC) for the Evaluation of Synthetic Biomaterials // 2003 Wiley Periodicals, Inc., pp. 487 – 501

    139. Forsstrom D, Svensson LG, Terselius B. Thermo-oxidative stability of polyamide 6 .lms III. Isothermal calorimetry. Poly Degrad Stab 2000;67:263–269.

    140. Hansen LD. Instrument selection for calorimetric drug stability studies. Pharmacol Technol 1996;64 –74.

    141. Angberg M, Nystrom C, Castensson S. Evaluation of heatconduction microcalorimetry in pharmaceutical stability studies. I. Precision and accuracy for static experiments in glass vials. Acta Pharmacol Suec 1988;25:307–320.

    142. Mohsen NM, Craig RG, Filisko FE. Effects of curing time and .ller concentration on curing and postcuring of urethane dimethacrylate composites: A microcalorimetric study. J Biomed Mater Res 1998;40:224 –232.

    143. Calorimetry Sciences Corporation (CSC). CSC 4400 isothermal microcalorimeter user’s manual, Revision 2.0. Grand Fork, UT: CSC; 1995.

    144. Nassberger L, Monti M. Effect of gentamicin on human blood cells metabolism as measured by microcalorimetry. Human Toxicol 1987;6:223–226.

    145. Pikal MJ, Dellerman KM. Stability testing of pharmaceuticals by high-sensitivity isothermal calorimetry at 25 °C: cephalosporins in the solid and aqueous solution states. Int J Pharmacol 1989;50:233–252.

    146. Kemp RB. Importance of the calorimetric-respirometric ratio in studying intermediary metabolism of cultured mammalian cells. Thermo Acta 1990;172:61–73.

    147. Thoren SA, Monti M, Holma B. Heat conduction microcalorimetry of overall metabolism in rabbit alveolar macrophages in monolayers and in suspensions. Biochim Biophys Acta 1990; 1033:305–310.

    148. Hansen LD, Eatough DJ, Lewis EA, Bergstrom RG, DeGraft-Johnson D, Cassidy-Thompson K. Shelf-life prediction from induction period calorimetric measurements on materials undergoing autocatalytic decomposition. Can J Chem 1990;68:2111– 2114.

    149. Koenigbauer MJ, Brooks SH, Rullo G, Couch RA. Solid-state stability testing of drugs by isothermal calorimetery. Pharmacol Res 1992;9:939 –944.

    150. Tan X, Meltzer N, Lindenbaum S. Solid-state stability studies of 13-cis-retinoic acid and all-trans-retinoic acid using microcalorimetry and HPLC analysis. Pharmacol Res 1992; 9:1203–1208

    151. Backman P, Kimura T, Scxhon A, Wadso I. Effects of pHvariations on the kinetics of growth and energy metabolism in cultured T-lymphoma cells: A microcalorimetric study. J Cell Physiol 1992;150:99 –103.

    152. Mohsen NM, Craig RG, Filisko FE. Effects of curing time and .ller concentration on curing and postcuring of urethane dimethacrylate composites: A microcalorimetric study. J Biomed Mater Res 1998;40:224 –232.

    153. Charlebois SJ. Stability and biocompatibility studies of implantable materials using isothermal microcalorimetry. Ph.D. dissertation, Department of Mechanical Engineering, The University of Memphis, Memphis, TN, 1999.

    154. Daniels AU, Charlebois SJ, Trieu HH, Haggard WO, Parr JE. UHMWPE: Post-sterilization stability by isothermal microcalorimetry. Trans 44th Ann Mtg, Orthop Res Soc, New Orleans, LA; 1998. pp 101–117

    155. Daniels AU, Charlebois SJ, Johnson RA, Haggard WG, Jahan MS, Buncick MC. Effect of sterilization method on long-term stability of shelf-stored and clinically-retrieved UHMWPE. Trans 46th Ann Mtg Orthop Res Soc, Orlando, FL; 2000. p 2

    156. Hardison A, Jahan S, Buncick M, Jani S, Holbrook J, Haggard W, Lewis G, Smith R. Kinetic analysis of UHMWPE using isothermal microcalorimetry. Trans 27th Soc Biomater, St. Paul, MN; 2001. p 82.

    157. Hardison A. Analysis of the thermo-chemical stability of ultra high molecular weight polyethylene using isothermal microcalorimetry. MS thesis, Department of Biomedical Engineering, The University of Memphis, Memphis, TN; 2001.

    158. Andreas Zogg, Francis Stoessel, Ulrich Fischer, Konrad Hungerbühler, Isotermal reaction calorimetry as tool for kinetic analysis // Thermochémica acta 419 (2004), pp. 1 – 17

    159. С Guntem, A.H. Keller, K. Hungerbiihler, Ind. Eng. Chem. Res. 37, (1998) 4017-4022.

    160. O. Levenspiel, Chemical Reaction Engineering, third ed., 1998.

    161. A. Zogg, A Combined Approach using Calorimetry and IR-ATR Spectroscopy for the Determination of Kinetic and Thermodynamic Reaction Parameters, Discussion ETH No. 15086, ETH Zurich, ETH Zurich, http://www.e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=diss&nr=15086, 2003.

    162. F. Becker, Chem. Ing. Tech. 19 (1968) 933-980.

    163. L.G. Karlsen, J. Villadsen, Chem. Eng. Sci. 42 (1987) 1153-1164.

    164. R.N. Landau, Thermochim. Acta 289 (1996) 101-126.

    165. W. Regenass, Chimia 51 (1997) 189-200.

    166. W. Hemminger, G. Holme, Calorimetry: Fundamentals and Practice, Verlag Chemie, Weinheim, 1984.

    167. W. Regenass, in: Proceedings of the Second Symposium der Gesellschaft fur Thermiscbe Analyse, 1976.

    168. H. Martin, Warmeflusskalorimetrie unter praparativen Bedingungen und ihre Anwendung zur Verfolgung der Isomerisierungskinetik von Trimethylphosphit, Ph.D. Thesis, University of Basel, Basel, 1975.

    169. Mettler Toledo, http://www.mt.com.

    170. R. Riesen, B. Grob, Swiss Chem. 7 (1985) 393.

    171. Systag, http://www.systag.ch.

    172. HEL, http://www.helgroup.co.uk.

    173. J. Singh, Process Saf. Prog. 16 (1997) 439.

    174. H.M. Andersen, J. Polym. Sci. Part A-l 4 (1966) 783-791.

    175. H.M. Andersen, J. Polym. Sci. Part A-l 7 (1969) 2889-2896.

    176. W. Kohler, O. Riedel, H. Scherer, Chem. Ing. Tech. 44 (1972) 1216-1218.

    177. B. Hentschel, Chem. Ing. Tech. 51 (1979) 823.

    178. J. Schildknecht, Thermochim. Acta 49 (1981) 87-100.

    179. M. Pollard, Org. Process Res. Dev. 5 (2001) 273-282.

    180. J. Pastre, A. Zogg, U. Fischer, K. Hungerbiihler, Org. Process Res. Dev. 5 (2001) 158-166.

    181. С Simms, J. Singh, Org. Process Res. Dev. 4 (2000) 554-562.

    182. M.R. Meeks, Polym. Eng. Sci. 9 (1968) 141-151.

    183. Chemisens, http://www.chemisens.com.

    184. Zeton-Altamira, http://www.zetonaltamira.com

    185. W. Pauer, J.P. Tchonkou, H.U. Moritz, D. Brown, Workshop Reaktionskalorimetrie, 1999.

    186. F. Becker, W. Walisch, Z. Phys. Chem. 46 (1965) 279-293.

    187. H. Nilsson, С Solvegren, B. Tornell, Chem. Scr. 19 (1982) 164-171.

    188. H. Nilsson, С Silvegren, B. Tornell, Die Angew. Makromol.Chem. 112(1983) 125-142.

    189. L. Jansson, H. Nilsson, С Silvegren, B. Tornell, Thermochim. Acta 118 (1987) 97-105.

    190. M. Zogg, Einfuhrung in die Mechanische Verfahrenstechnik, third ed., B.G. Teubner, Stuttgart, 1993.

    191. V.D.I. Warmeatlas, eighth ed., Springer, Dusseldorf, 1997.

    192. L.G. Karlsen, J. Villadsen, Chem. Eng. Sci. 42 (1987) 1165-1173.

    193. J.M. Zaldivar, H. Hernandez, C. Barcons, Thermochim. Acta 289 (1996) 267-302.

    194. RC1 Handbook, ed. 01/08, Mettler-Toledo GmbH, Switzerland, 2001.

    195. E. Cesari, P.C. Gravelle, J. Gutenbaum, J. Hatt, J. Navarro, J.L. Petit, R. Point, V. Torra, E. Utzig, W. Zielenkiewicz, J. Therm. Anal. 20 (1981) 47-59.

    196. L. Vincent, N. Sbirrazzuoli, S. Vyazovkin, Ind. Eng. Chem. Res. 41 (2002) 6650-6655.

    197. W. Regenass, Chimia 37 (1983) 430‑437.

    198. A. Zogg, U. Fischer, K. Hungerbiihler, Ind. Eng. Chem. Res. 42 (2003) 767-776.

    199. B. Baranek, M. Gottfried, K. Korfnage, W. Pauer, K. Schulz, H.U. Moritz, Mettler Toledo Publication, 1999.

    200. W. Litz, J. Therm. Anal. 27 (1983) 215-228.

    201. M. Schlegel, A. Lowe, Chem. Eng. Process. 37 (1997) 61-67.

    202. J. Schildknecht, in: Proceeding of the Second International Sym¬posium on Loss Prevention and Safety Promotion in the Process Industries III, 1977, pp. 139-143.

    203. A. Tietze, A. Pross, K.H. Reichert, Chem. Ing. Tech. 68 (1996) 97-100.

    204. S. BenAmor, D. Colombie, T. McKenna, Ind. Eng. Chem. Res. 41 (2002) 4233-4241.

    205. A. Zogg, M. Wohlwend, U. Fischer, K. Hungerbiihler, Patent: Kalorimeter, No. EP 1184649, Application No. 00810797.1, 2000.

    206. T. Stockhausen, J. Priiss, H.-U. Moritz, Dechema-Monographien 127 (1992) 341-349.

    207. S. Erwin, K. Schulz, H.U. Moritz, С Schwede, H. Kerber, Chem. Eng. Technol. 24 (2001) 305-311.

    208. Setaram, http://www.setaram.com.

    209. R. Andre, L. Bou-Diab, P. Lerena, F. Stoessel, M. Giordano, С Mathonat, Org. Process Res. Dev. 6 (2002) 915-921.

    210. Safety series, Drying of Solids, second ed., booklet 6, ESCIS Basel, Switzerland, 2003.

    211. Joseph W. Magee, Renee J. Deal and John C. Blanco, High-temperature adiabatic calorimeter for constant-volume heat capacity measurements of compressed gases and liquids // Volume 103, Number 1, January–February 1998

    212. Deepak Varandaniy, A K Bandyopadhyayy, V S Yadavy, E Gmelinz and A V Narlikary; A simple, versatile and high-precision quasi-adiabatic calorimeter for specific-heat measurement in the temperature range 77–300 K // Meas. Sci. Technol. 7 (1996) pp. 511–514.

    213. Н.П. Горбачук Определение энтальпий полиморфных превращений в некоторых силицидах и германидах редкоземельных метал лов // УКР. ХИМ. ЖУРН. 2008. Т. 74, № 5, 5 стр.

    214. J. S. Jun, B. S. O, C. Y. Yi, D. J. Seong, J. S. Oh, C. K. Park Development of a Twin-Cup Microcalorimeter for Radioactivity Measurement, 10 стр. / http://irpa11.irpa.net/pdfs/3h28.pdf.

    215. В.Г. Вильданов, М.М. Горшков, Е.А. Козлов, О.В.Ткачев, Д.Т. Юсупов Методика твердотельного калориметра для измерения остаточной энергии претерпевших взрывное обжатие шаров и оболочек // VII Забабахинские научные чтения, Снежинск, 8-12 сентября 2003 г., стр. 1 – 5

    216. N. M. Mohsen, R. G. Craig, F. E. Filisko Effects of curing time and filler concentration on curing and postcuring of urethane dimethacrylate composites: A microcalorimetric study // Curing and postcuring of udma composites, pp. 224 – 232

    217. E. A. Johannessen and J. M. R. Weaver, P. H. Cobbold, J. M. Cooper Heat conduction nanocalorimeter for pl-scale single cell measurements // Applied Physics Letters, Volume 80, Number 11, 18 March 2002, pp. 2029 – 2031

    218. I. K. Moon and D. H. Jung, C. Mukesh and Y. H. Jeong, Peltier calorimeter, peltier vacuum gauge and gas convection acceleration sensor // Journal of the Korean Physical Society, Vol. 53, No. 6, December 2008, pp. 3572 – 3577

    219. Lide D R 1993–4 CRS Handbook of Chemistry and Physics 74th edn (Cleveland, OH: CRS) p 12–133

    220. Gerhard Graf, Volker Martens, Wolfgang Queisserl, Peter Weinholz, Alexander Altenbach; A multicalorimeter for the study of biological activity in marine sediments // Marine Ecology - Progress Series, Vol. 45: pp. 201-204, 1988

    221. Thomas Maskow, Johannes Lerchner, Mirko Peitzsch, Hauke Harms, Gert Wolf; Chip calorimetry for the monitoring of whole cell biotransformation // Journal of Biotechnology 122 (2006), pp. 431–442

    222. Lerchner, J., Wolf, A., Wolf, G., Baier, V., Kessler, E., Nietzsch, M., Krügel, M., 2005. A new micro-fluid chip calorimeter for biochemical applications. Thermochim. Acta, doi:10.1016/j.tca.2005.07.011.

    223. Briggner, L.E., 1991. Test and calibration processes for microcalorimeters, with special reference to heat conduction instruments used with aqueous systems. J. Biochem. Biophys. Meth. 22, 101–118.

    224. O’Neill, M.A.A., Beezer, A.E., Labetoulle, C., Nicolaides, L., Mitchell, J.C., Orchard, J.A., Connor, J.A., Kemp, R.B., Olomolaiye, D., 2003. The base catalysed hydrolysis of methyl paraben: a test reaction for flow microcalorimeters used for determination of both kinetic and thermodynamic parameters. Thermochim. Acta 399, 63–71.

    225. O’Neill, M.A.A., Beezer, A.E., Vine, G.J., Kemp, R.B., Olomolaiye, D., Volpe, P.L.O., Oliveira, D., 2004. Practical and theoretical consideration of flow-through microcalorimetry: determination of “thermal volume” and its flow rate dependence. Thermochim. Acta 413, 193–199.

    226. Yasuyuki Suzuki, Naomichi Chida, Makoto Komiyama; A calorimeter for μW level optical poweb transfer standard // 1991 IEEE, pp. 131 – 134

    227. Steven F. Mullen, James D. Benson, Xu Han; Development of a micro-scale differential scanning calorimeter for single cell measurements // Proceedings of HT2007, 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference, July 8-12, 2007, Vancouver, British Columbia, CANADA, ‑ 8 p.

    228. G. Cacciamani, G. Borzone and R. Ferro; On a simple high temperature direct reaction calorimeter // Journal of Alloys and Compounds, Volume 220, Issues 1-2, 1 April 1995, Pages 106-110, Proceedings of the 5th International Meeting on Thermodynamics.

    229. Vittorio Basso, Michaela Küpferling, Carlo P. Sasso, and Laura Giudici; A Peltier cell calorimeter for the direct measurement of the isothermal entropy change in magnetic materials // Rev. Sci. Instrum., Volume 79, Issue 6, Condensed matter; materials

    230. Michaela Kuepferling, Carlo Paolo Sasso, Vittorio Basso, and Laura Giudici; An isothermal peltier cell calorimeter for measuring the magnetocaloric effect // IEEE Transactions On Magnetics, Vol. 43, No. 6, June 2007

    231. Jordi Marcos, Felix Casanova, Xavier Batlle, Amı´lcar Labarta, Antoni Planes, and Lluıs Manosa; A high-sensitivity differential scanning calorimeter with magnetic field for magnetostructural transitions // Review Of Scientific Instruments, Volume 74, Number 11 November 2003, pp. 4768 – 4771

    232. Luciano Brunetti, Luca Oberto, and Emil T. Vremera; Thermoelectric sensors as microcalorimeter load // IEEE Transactions On Instrumentation And Measurement, Vol. 56, No. 6, December 2007, pp. 2220 – 2224

    233. L. Brunetti and E. Vremera, “Updated calibration method for coaxial microcalorimeter,” in Proc. 27th CPEM, London, U.K., Jun. 2004, pp. 404–405.

    234. Katarina Verhaegen, Kris Baert; Fabrication and modeling of a silicon micro calorimeter, // The Eleventh International Conference on Microelectronics, 1999. ICM '99. - pp. 75 – 79

    235. Storms, E. Use Of A Very Sensitive Seebeck Calorimeter To Study The Pons-Fleischmann And Letts Effects. // in Tenth International Conference on Cold Fusion. 2003., 14 стр.

    236. Storms, E. The Method and Results Using Seebeck Calorimetry. // in ICCF-14 International Conference on Condensed Matter Nuclear Science. 2008. Washington, DC., 16 p.

    237. Edmund Storms; Description of a sensitive Seebeck calorimeter used for cold fusion studies // in the 12th International Conference on Condensed Matter Nuclear Science. 2005., Yokohama, Japan., 7 p.

    238. Sakamoto, Y., et al. Calorimetric Enthalpies in the b-phase Regions of Pd Black-H(D) Systems. in Sixth International Conference on Cold Fusion,Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.

    239. Б. Н. Бойко, Р. В. Малышев, С. Ю. Огородникова, З. Ф. Соломина, Дифференциальный микрокалориметр для исследования процессов метаболизма в живых структурах и его применение в физиологии растений // Научное приборостроение, 2009, том 19, № 1, с. 36 – 44

    240. By R. Danley, T. Kelly, and J. Groh; Improved DSC Performance Using Tzero Technology / International Labmate Volume XXVI, Issue II – 2 p.

    241. Takemi Inoue, Kyohei Yamamura, and Toshio Nemoto, Automatic calorimeter system for the effective efficiency measurement of a bolometer mount in 35-GHz Band // IEEE transactions on instrumentation and measurement, Vol. im-27, No. 3, September 1978, pp. 205 -209

    242. Inoue, T.; Yamamura, K. Total radiant power measurement of laser diode by a calorimetric method // Electronics Letters 28th April 1983 Vol. 19 No. 9, pp. 320 – 321

    195

  • Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

    Оставленные комментарии видны всем.