Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
259
Добавлен:
12.02.2016
Размер:
6.22 Mб
Скачать

Шіллер микола миколайович

(1848-1910)

Зробив внесок у розвиток понять сили і маси. Розрізняв статичне і кінематичне тлумачення сили. Висунув ідею про можливість побудови механіки мас без явного використання поняття сили

§3. Закон збереження імпульсу

Сукупність матеріальних точок (тіл), які розглядаються як єдине ціле, називається механічною системою. Сили взаємодії між матеріальними точками механічної системи називаються внутрішніми. Сили, з якими на матеріальні точки системи діють зовнішні тіла називаються зовнішніми. Механічна система, в якій тіла взаємодіють між собою і на яку не діють зовнішні сили, називаєтьсязамкненою.

Розглянемо механічну систему, яка складається із nтіл, маси і швидкості яких дорівнюють відповідно,, ...,і,, ...,. Нехай,, ...,- рівнодійні зовнішніх сил, що діють на кожне з цих тіл, а- внутрішня сила, яка діє наі-е тіло з бокук-го.

На рис. 6 наведені рівнодійні зовнішніх сил і внутрішні сили, які діють між тілами механічної системи, що складається, наприклад, із трьох тіл. Запишемо другий закон Ньютона для кожного з nтіл механічної системи:

,

,

……………………………………………

.

Додаючи почленно ці рівняння, знаходимо:

За третім законом Ньютона

.

Тому

і ,

де – імпульс системи, а– головний вектор зовнішніх сил.

Отже, похідна за часом від імпульсу механічної системи дорівнює головному вектору зовнішніх сил, що діють на систему.

У випадку замкненої системи

,

тобто

.

Цей вираз є законом збереження імпульсу: імпульс замкненої системи зберігається, тобто не змінюється із бігом часу.

Закон збереження імпульсу є наслідком однорідності простору, яка полягає в тому, що фізичні властивості і закони руху замкненої системи не залежать від вибору положення початку координат інерціальної системи відліку.

§4. Центр мас (інерції) механічної системи і закон його руху

Центром мас, або центром інерції системи матеріальних точок називається точкаC, радіус-векторякої дорівнює

,

де - загальна маса всієї системи,– радіус-векторi-ї матеріальної точки. Якщо радіус-векторипроведені із центра масC, то.

Отже, центр мас - це геометрична точка, для якої сума добутків мас всіх матеріальних точок, що утворюють механічну систему, на їх радіус-вектори, які проведені з цієї точки, дорівнює нулю.

Швидкість центра мас

.

Отже,

,

тобто імпульс системи дорівнює добутку величини маси системи на величину швидкості руху її центра мас.

Продиференціювавши це рівняння за часом, отримуємо:

.

Центр мас механічної системи рухається як матеріальна точка, в якій зосереджено всю масу системи і на яку діє сила, що дорівнює головному вектору прикладених до системи зовнішніх сил.

§5. Робота сили та її вираз через криволінійний інтеграл

Нехай тіло рухається прямолінійно і на всьому переміщенніна нього діє стала за величиною і напрямком сила, яка утворює кутз напрямком переміщення. Дію силина переміщенні, характеризують величиною, яку називаютьроботою.

Робота , яка виконана силою, – це фізична величина, яка дорівнює ска­лярному добутку сили на переміщення:

,

де – шлях пройдений тілом за час дії сили.

У загальному випадку сила може змінюватись як за модулем, так і за на­прямком. При цьому сила може залежати як від координатx, y, zточки прикладання сили, так і від швидкості точки. Якщо розглянути елементарне переміщення, то силуможна вважати сталою, а рух точки її прикладання – прямолінійним.Елементарною роботоюсилина переміщенніназивається скалярна величина

,

де - елементарний шлях, α – кут між векторамиі, - проекція вектора на напрямок вектора(рис.7).

Якщо вектори ізадані своїми декартовими координатами так, що

, ,

то елементарна робота

,

де ,,- проекції сили на координатні осі;dx,dy, dz– зміни координат радіус-векторапри переміщенні.

Робота сили на ділянці траєкторії від точки 1до точки2дорівнює алгебраїчній сумі елементарних робіт на окремих нескінченно малих ділянках шляху:

,

де – проекція силиFна напрямок переміщення.

Отриманий інтеграл називається криволінійним інтегралом, оскільки він представляє інтеграл від функціївздовж деякої кривої, яка є траєкторією руху. Часто траєкторію позначають літероюL, тоді

.

Таким чином робота сили вздовж кривої Lдорівнює криволінійному інтегралу від векторавздовж траєкторіїL.

Нехай залежність сили від шляхуSзображена графічно (рис. 8). Тоді роботаAна шляху від точки1до точки2числово дорівнює площі фігури, яка обмежена кривою, ординатами, які проходять через точкиіта віссюS.

Сила, що діє на тіло, не виконує роботу, якщо:

а) тіло перебуває у спокої (dS=0);

б) сила перпендикулярна до напрямку переміщення тіла .

Якщо , то робота сили до­датна і силуназивають рушійною силою. Якщо кут, то робота сили від’ємна і силуназивають силою опору.

Якщо на тіло, яке рухається поступально, одночасно діють декілька сил, то робота рівнодійної сили при переміщенні на дорівнює алгебраїчній сумі робіт складових сил:

.

Сила , що діє на матеріальну точку або на тіло, яке рухається поступально, називаєтьсякон­сервативною або потенціальною, якщо робота, яка виконується цією силою при переміщенні точки (тіла) з одного довільного положення1 в інше2, не залежить від того, вздовж якої траєкторії відбулось це переміщення (рис. 9):

.

Зміна напрямку руху вздовж траєкторії на протилежний спричинює зміну знака роботи (кут замінюється наіcosзмінює свій знак). Тому робота консервативної сили при переміщенні матеріальної точки вздовж замкненої траєкторіїL(1-а-2-b-1) тотожно дорівнює нулю:

.

Прикладами консервативних сил можуть бути сили тяжіння, гравітаційні сили, сили пружності, сили електростатич­ної взаємодії між зарядженими тілами.

Соседние файлы в папке Фізичні основи механіки