
- •Міністерство освіти і науки україни
- •Запорізький національний технічний університет
- •Лекції з фізики
- •8.2 Основні положення класичної теорії електропровідності
- •8.3 Закон Ома по класичній теорії електропровідності
- •1 Вступ
- •1.1 Предмет і задачі фізики
- •1.2 Поняття про вимірювання. Інтернаціональна система одиниць вимірювання (сі)
- •2 Механіка. Кінематика
- •2.1 Основні поняття і задача кінематики
- •2.2 Класифікація механічних рухів
- •2.3 Способи задавання руху точки у просторі
- •2.4 Швидкість при криволінійному русі
- •2.5 Прискорення при криволінійному русі. Дотична та нормальна складові прискорення
- •2.6 Класифікація рухів в залежності від значень нормального і дотичного прискорень
- •2.7 Рух тіла по колу. Кутова швидкість та кутове прискорення. Аналогія поступального і обертального рухів
- •3 Динаміка
- •3.1 Закони Ньютона. Маса. Сила
- •3.2 Імпульс. Загальне формулювання 2-го закону Ньютона. Закон збереження імпульсу
- •3.3 Другий закон Ньютона і дві задачі динаміки
- •3.4 Принцип відносності Галілея. Правило складання швидкостей в класичній механіці
- •3.5 Сили пружності. Закон Гука для деформації розтягування (стискування)
- •3.6 Закон Гука для деформації зсуву
- •3.7 Сили тертя. Сухе тертя. Сили тертя спокою, ковзання, кочення
- •3.8 Сила тяжіння. Закон всесвітнього тяжіння. Гравітаційне поле та його напруженість
- •3.9 Сили в неінерціальних системах відліку. Сили інерції
- •4. Робота. Енергія. Імпульс. Закони збереження
- •4.1 Імпульс тіла. Імпульс системи тіл. Центр інерції системи . Закон збереження імпульсу
- •4.2 Принцип реактивного руху. Рівняння і.В.Мещерського і к.Е.Ціолковського
- •4.3 Механічна робота. Потужність
- •4.4 Поняття про енергію. Кінетична та потенціальна енергії
- •4.5 Закон збереження механічної енергії
- •4.6 Потенціал гравітаційного поля. Градієнт потенціалу. Зв’язок між напруженістю і потенціалом
- •4.7 Потенціальні криві. Потенціальний бар’єр. Рух класичної частинки в одномірній потенціальній ямі
- •4.8 Застосування законів збереження імпульсу і енергії до центрального удару куль
- •4.9 Перша та друга космічні швидкості
- •4.10 Обертальний рух твердих тіл. Абсолютно тверде тіло. Момент сили. Пара сил
- •4.11 Основне рівняння динаміки обертального руху
- •4.12 Аналогія величин і рівнянь поступального і обертального руху. Кінетична енергія обертання тіла
- •4.13 Розрахунок моментів інерції деяких тіл. Теорема Штейнера
- •4.14 Гіроскоп. Гіроскопічний ефект
- •5. Механіка рідин і газів
- •5.1 Сили в’язкості. Рух тіл в рідинах і в газах. Формула Стокса
- •5.2 Елементи гідроаеродинаміки. Рівняння д. Бернуллі
- •5.3 Вимірювання в’язкості методом Пуазейля
- •5.4 Ламінарний та турбулентний режими течії рідин (газів)
- •6. Молекулярна фізика і термодинаміка
- •6.1 Положення молекулярно-кінетичної теорії та її задача
- •6.2 Поняття ідеального газу та його закони
- •6.3 Закон Дальтона. Рівняння стану для суміші газів
- •6.4 Основне рівняння молекулярно-кінетичної теорії
- •6.5 Середня енергія поступального руху молекул. Молекулярно-кінетичне тлумачення температури
- •6.6 Поняття про функцію розподілу. Функція розподілу Максвела
- •6.7 Швидкості молекул. Правило статистичного усереднення
- •6.8 Експериментальна перевірка Максвеллівського розподілу молекул по швидкостям (дослід Штерна)
- •6.9 Барометрична формула. Больцманівський розподіл молекул в силовому полі
- •6.10 Ефективний діаметр молекул. Частота зіткнень та середня довжина вільного пробігу молекул
- •6.11 Явища переносу в газах. Внутрішнє тертя
- •6.12 Теплопровідність газів
- •6.13 Дифузія
- •6.14 Зв’язок між коефіцієнтами переносу. Властивість газу при низькому тискові
- •6.15 Внутрішня енергія системи. Кількість теплоти. Перше начало термодинаміки
- •Степені вільності молекул. Розподіл енергії по степеням вільності. Внутрішня енергія ідеального газу
- •Робота газу в ізопроцесах
- •Молекулярно-кінетична теорія теплоємності газів
- •Адіабатний процес
- •Оборотні і необоротні процеси. Цикли
- •Принцип дії теплової і холодильної машин та їх коефіцієнт корисної дії (ккд). Холодильний коефіцієнт. Друге начало термодинаміки
- •Ідеальна теплова машина Карно та її ккд
- •Поняття про ентропію. Властивості ентропії
- •Зміна ентропії ідеального газу. Ізоентропійний (адіабатний) процес
- •Реальні гази. Рівняння Ван-дер-Ваальса та його аналіз. Зрідження газів
- •Внутрішня енергія реального газу
- •Рідини. Явища в рідинах
- •6.28 Фазові переходи. Діаграма стану речовини. Рівняння Клапейрона-Клаузіуса
- •7 Електродинаміка.Електростатика
- •7.1 Поняття про заряд. Закон збереження заряду. Взаємодія зарядів. Закон Кулона. Силові характеристики поля
- •7.2 Принцип суперпозиції та його застосування до розрахунку електростатичного поля
- •7.3 Теорема Остроградського-Гаусса та її застосування до розрахунку електростатичного поля заряджених тіл
- •7.4 Робота в електростатичному полі. Різниця потенціалів. Потенціал. Циркуляція вектора напруженості електростатичного поля
- •7.5 Еквіпотенціальні поверхні. Зв’язок між напруженістю і потенціалом електростатичного поля
- •7.6 Електроємність. Конденсатори. З’єднання конденсаторів
- •7.7 Енергія та густина енергії електростатичного поля
- •8 Постійний електричний струм та його закони
- •8.1 Сила струму. Електрорушійна сила (е.Р.С.). Напруга. Густина струму
- •8.2 Основні положення класичної теорії електропровідності металів. Експериментальне підтвердження електронної природи струму в металах
- •8.3 Закон Ома по класичній теорії електропровідності металів. Електричний опір провідників
- •8.4 Закон Джоуля-Ленца по класичній теорії електропровідності металів
- •8.5 Закон Відемана-Франца по класичній теорії електропровідності металів
- •8.6 Протиріччя класичної теорії електропровідності металів
- •8.7 Закони Кірхгофа для розгалужених електричних кіл
- •8.8 Робота виходу електронів із металу. Контактна різниця потенціалів (крп). Закони Вольта
- •8.9 Термоелектричні явища. Ефекти Зеебека і Пельтьє
- •8.10 Термоелектронна емісія. Струм у вакуумі
- •8.11 Струм у газах
- •9 Електромагнетизм
- •9.1 Магнітне поле рухомих зарядів. Індукція магнітного поля. Закон Ампера
- •9.2 Закон Біо-Савара-Лапласа. Принцип суперпозиції для магнітного поля
- •9.3 Застосування закону Біо-Савара-Лапласа і принципу суперпозиції для розрахунку магнітного поля на осі колового струму
- •9.4 Застосування закону Біо-Савара-Лапласа і принципу суперпозиції для розрахунку магнітного поля прямолінійного провідника зі струмом
- •9.5 Взаємодія паралельних прямолінійних провідників із струмом
- •9.6 Магнітне поле соленоїда
- •9.7 Дія магнітного поля на рухомий заряд (сила Лоренца). Рух заряду в магнітному полі
- •9.8 Циркуляція вектора напруженості магнітного поля. Закон повного струму. Магнітний потік. Теорема Остроградського- Гаусса для магнітного поля
- •9.9 Контур із струмом у магнітному полі
- •9.10 Механічна робота в магнітному полі
- •9.11 Явище електромагнітної індукції. Закони Фарадея і Ленца
- •9.12 Явище самоіндукції. Індуктивність. Індуктивність соленоїда та тороїда
- •9.13 Зміна струму в котушці при його вмиканні і вимиканні. Фізичний зміст індуктивності
- •9.14 Енергія та густина енергії магнітного поля
4. Робота. Енергія. Імпульс. Закони збереження
4.1 Імпульс тіла. Імпульс системи тіл. Центр інерції системи . Закон збереження імпульсу
Імпульсом
тіла
називається вектор, величина якого
дорівнює добутку маси тіла на його
швидкість. Напрямок вектора імпульсу
співпадає з вектором швидкості
.
(4.1)
Імпульс
системи тіл (
)
– це векторна сума імпульсів тіл цієї
системи
.
(4.2)
Імпульс
системи тіл можна знайти, ввівши поняття
центра мас системи (рис.4.1) Радіус-вектор
центра мас визначається рівнянням:
(4.3)
Взявши похідну за часом, одержимо
,
звідки
маємо, що імпульс системи тіл дорівнює
добутку маси системи на швидкість руху
її центра мас
.
Нехай
два тіла m1
і m2
взаємодіють з силами і.
На них діють зовнішні сили
і
(рис.4.2). Позначимо
і
- швидкості
тіл в момент часу t,
і
- швидкості
в момент часу t+dt.
Запишемо другий закон Ньютона для
кожного тіла
Додаємо ці рівняння
.
(4.4)
По
третьому закону Ньютона
як внутрішні сили.
Якщо
векторна сума зовнішніх сил дорівнює
нулю ,
система називається ізольованою, або
замкнутою. Для такої системи із (4.4)
одержуємо
,
тобто векторна
сума імпульсів замкнутої системи
залишається незмінною. Це є закон
збереження імпульсу. Якщо ж система не
замкнута, то її імпульс змінюється на
величину імпульсу зовнішніх сил
.
4.2 Принцип реактивного руху. Рівняння і.В.Мещерського і к.Е.Ціолковського
В основі реактивного руху лежить закон збереження імпульсу. Від тіла з певною швидкістю відокремлюється деяка маса. У відповідності із законом збереження імпульсу, швидкість руху тіла теж буде змінюватись, тобто це рух тіла змінної маси. Типовим прикладом реактивного руху є рух ракети. Продукти згорання палива викидаються через сопло ракети, тоді її корпус рухається в протилежному напрямку (рис.4.3).
Знайдемо рівняння, яке описує рух ракети, та швидкість її руху. Введемо позначення:
m – маса ракети в момент часу t;
-
миттєва
швидкість корпусу ракети відносно
вибраної системи координат x,y,z;
-
швидкість
продуктів згорання палива віднос-но
цієї ж системи координат x,y,z;
-
зміна швидкості корпусу ракети;
dm – маса викинутих за час dt продуктів згорання;
-
рівнодіюча зовнішніх сил.
Запишемо
другий закон Ньютона: імпульс сили
дорівнює зміні імпульсу системи
„ракета-продукти згорання”
Нехтуючи
доданком
,
який набагато менший, ніж інші, так як
є добуток двох нескінченно малих величин,
одержуємо
.
Векторна сума
дає швидкість
витоку газів відносно корпусу ракети.
Її величина залишається незмінною, так
як вона визначається конструкцією сопла
реактивного двигуна. Рівняння
(4.5)
називається
рівнянням І.В.Мещерського (російський
вчений, 1859-1935). Другий доданок в рівнянні
(4.5) має розмірність сили і називається
реактивною силою, яка виникає за рахунок
зміни маси тіла з часом
.
К.Е.Ціолковський
(російський вчений, 1857-1935) розв’язав
рівняння (4.5) Мещерського для випадку
відсутності зовнішніх сил
з початковими умовами: приt
= 0 V
= 0, m
= mo
–стартова маса ракети. В скалярній
формі рівняння (4.5) в проекції на
вертикальну вісь z має вид
.
Інтегрування дає
. (4.6)
Це рівняння К.Е.Ціолковського. Воно показує, що кінцева швидкість ракети пропорційна відносній швидкості витоку газів і тим більша, чим більше відношення стартової маси mo до кінцевої маси m. Щоб збільшити це відношення, Ціолковський запропонував багатоступеневі реактивні двигуни. Конструктивно неможливо виготовити легкий корпус двигуна, заправивши в нього велику масу палива. Модульний же корпус дає можливість збільшити відношення mo/m, а значить і кінцеву швидкість ракети.