
- •1. Определенный интеграл. Интегральная сумма. Верхняя и нижняя интегральные суммы. Их свойства.
- •2. Ограниченность интегрируемой функции.
- •Доказательство
- •3. Критерий интегрируемости ограниченной на отрезке функции.
- •4. Теорема об интегрируемости монотонной на отрезке, а также непрерывной на отрезке функций.
- •5. Основные свойства определенного интеграла.
- •6. Формула среднего значения для определенного интеграла.
- •7. Интеграл с переменным верхним пределом. Его непрерывность и дифференцируемость.
- •8. Формула Ньютона-Лейбница для определенного интеграла.
- •9. Вычисление определенного интеграла по частям и заменой переменной.
- •10. Применение определенного интеграла (площадь плоской фигуры, длина дуги кривой, объем тела вращения).
- •11. Понятие числового ряда и его суммы. Критерий Коши сходимости ряда. Необходимое условие сходимости.
- •12. Признаки Деламбера и Коши сходимости рядов с неотрицательными членами.
- •13. Интегральный признак Коши сходимости числового ряда.
- •14. Знакопеременные числовые ряды. Абсолютная и условная сходимость. Знакочередующиеся ряды. Признак Лейбница.
- •15. Функциональный ряд. Сумма ряда. Определение равномерной сходимости ряда. Критерий Коши равномерной сходимости функционального ряда.
- •16. Признак Вейерштрасса равномерной сходимости.
- •18. Степенной ряд. Теорема Абеля.
- •19. Радиус сходимости степенного ряда. Формула Коши-Адамара для радиуса сходимости степенного ряда.
- •21. Функции многих переменных. Понятие n-мерного евклидового пространства. Множество точек евклидового пространства. Последовательность точек и ее предел. Определение функции нескольких переменных.
- •22. Предел функции нескольких переменных. Непрерывность функции. Частные производные.
- •23. Определение дифференцируемой функции нескольких переменных и ее дифференциала. Производные и дифференциалы высших порядков.
- •24. Формула Тейлора для функции многих переменных. Экстремум функции нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума.
- •25. Двойной интеграл и его свойства. Сведение двойного интеграла к повторному.
- •27. Замена переменных в тройном интеграле. Цилиндрические и сферические координаты.
- •28. Вычисление площади гладкой поверхности, заданной параметрически и в явном виде.
- •29. Определение криволинейных интегралов первого и второго рода, их основные свойства и вычисление.
- •30. Формула Грина. Условия независимости криволинейного интеграла от пути интегрирования.
- •31. Поверхностные интегралы первого и второго рода, их основные свойства и вычисление.
- •32. Теорема Гаусса-Остроградского, ее запись в координатной и векторной (инвариантной) формах.
- •33. Формула Стокса, ее запись в координатной и векторной (инвариантной) формах.
- •34. Скалярное и векторное поля. Градиент, дивергенция, ротор. Потенциальное и соленоидальное поля.
- •35. Оператор Гамильтона. (набла) его применение (примеры).
- •36. Основные понятия, относящиеся к обыкновенным дифференциальным уравнениям (оду) первого порядка: общее и частное решения, общий интеграл, интегральная кривая. Задача Коши, ее геометрический смысл.
- •37. Интегрирование оду первого порядка с разделяющимися переменными и однородных.
- •38. Интегрирование линейных оду первого порядка и уравнения Бернулли.
- •39. Интегрирование оду первого порядка в полярных дифференциалах. Интегрирующий множитель.
- •40. Дифференциальные уравнения первого порядка, неразрешенные относительно производной. Метод введения параметра.
- •41. Уравнение n-го порядка с постоянными коэффициентами. Характеристическое уравнение. Фундаментальная система решений (фср) однородного уравнения, общее решение неоднородного уравнения.
- •42. Система линейных дифференциальных уравнений первого порядка. Фср однородной системы. Общее решение однородной системы.
13. Интегральный признак Коши сходимости числового ряда.
Пусть члены
знакоположительного числового ряда
u1+u2+…+un… (7) не возрастают: u1³u2≥…≥un≥…
и пусть f(x) такая положительная,
непрерывная, невозрастающая на промежутке
[1;∞) функция, что f(1)=u1, f(2)= u2 ,…, f(n)=
=un,… . Тогда ряд (7) сходится или расходится
одновременно с несобственным интегралом
Доказательство:
Построим график функции y=f(x) на отрезке [1;n] и построим прямоугольник с основаниями [1;2], [2;3], …, [n-1;n] и высотами u1,u2,…,un-1, а также с высотами u2,u3,…,un.
Sn=u1+u2+…+un-1+un, Sвпис=u2.1+u3.1+…+un.1=u2+u3+…+un=Sn-u1,
Sопис=u1+u2+…+ +un-1=Sn-un.
Площадь криволинейной
трапеции S=.
Получаем
Sn-u1<
<
Sn-un.
Отсюд:
Sn<u1+(17)
и Sn>un+(18)
Пусть
сходится. Это означает, что существует
конечный предел
=Y.
Соотношение (17) принимает вид: Sn<u1+Y при
любом n. Это означает, что последовательность
частичных сумм Sn ряда (7) ограничена и,
следовательно, ряд (7) сходится. Пусть
расходится. Это означает, что
=∞
и тогда из (18) следует, что последовательность
частичных сумм Sn ряда (7) неограничена
и, следовательно, ряд (7) расходится.
Теорема доказана.
14. Знакопеременные числовые ряды. Абсолютная и условная сходимость. Знакочередующиеся ряды. Признак Лейбница.
Числовые ряды, содержащие как положительные, так и отрицательные члены, называются знакопеременными рядами.
Числовой ряд вида u1-u2+u3-u4+…+ +(-1)n-1.un+…, где un – модуль члена ряда, называется знакочередующимся числовым рядом.
Если сходится и сам знакопеременный ряд и ряд, составленный из абсолютных величин его членов, то говорят, что знакопеременный ряд сходится абсолютно.
Если знакопеременный ряд сходится, а ряд, составленный из абсолютных величин членов этого ряда, расходится, то говорят, что знакопеременный ряд сходится условно.
Признак Лейбница:
Если для знакочередующегося числового ряда
(19)
Выполняются два условия:
Члены ряда убывают по модулю u1>u2>…>un>…,
то ряд (19) сходится, причём его сумма положительна и не превосходит первого члена ряда.
Доказательство:
Рассмотрим частичную сумму чётного числа членов ряда S2n=(u1-u2)+(u3-u4)+…+(u2n-1-u2n).
По условию u1>u2>…>u2n-1>u2n, то есть все разности в скобках положительны, следовательно, S2n возрастает с возрастанием n и S2n>0 при любом n.
С другой стороны
S2n=u1-[(u2-u3)+(u4-u5)+…+(u2n-2-u2n-1)+u2n].
Выражение в квадратных скобках
положительно и S2n>0,
поэтому S2n<u1
для любого n.
Таким образом, последовательность
частичных сумм S2n
возрастает и ограничена, следовательно,
существует конечный
S2n=S.
При этом 0<S≤u1.
Рассмотрим теперь
частичную сумму нечётного числа членов
ряда S2n+1=S2n+u2n+1.
Перейдём в последнем равенстве к пределу
при n→∞:S2n+1=
S2n+
u2n+1=S+0=S.
Таким образом, частичные суммы как
чётного, так и нечётного числа членов
ряда имеют один и тот же предел S,
поэтому
Sn=S,
то есть данный ряд сходится. Теорема
доказана.
Замечания:
1. Теорема Лейбница справедлива и если условие un>un+1 выполняется, начиная с некоторого номера N.
2. Условие un>un+1 не является необходимым. Ряд может сходиться, если оно не выполняется.