
- •Тема 1. Случайные события
- •2 Алгебра событий.
- •3 Определения вероятности события.
- •4 Элементы комбинаторики
- •1 Теоремы сложения вероятностей.
- •4 Формула полной вероятности. Формула вероятности гипотез.
- •Тема 2. Повторные независимые испытания
- •2 Наивероятнейшее число наступлений события в независимых испытаниях.
- •3 Локальная теорема Муавра-Лапласа.
- •4 Интегральная теорема Муавра-Лапласа. Пуассоновское приближение
- •Тема 3. Дискретные случайные величины
- •2 Закон распределения вероятностей дискретной случайной величины.
- •3 Математическое ожидание и его свойства.
- •4 Дисперсия дискретной случайной величины и ее свойства
- •5 Одинаково распределенные взаимно-независимые случайные величины
- •Тема 4. Непрерывные случайные величины
- •2)Дифференциальная функция (плотность распределения) непрерывной случайной величины и ее свойства.
- •Тема 5. Основные законы распределения случайных величин
- •1. Основные законы распределения дискретных случайных величин.
- •2) Равномерное распределение
- •Тема 6. Функции случайных величин и векторов
- •2) Композиция законов распределения
- •3) Специальные законы распределения
- •Тема 7. Многомерные случайные величины
- •2)Функции распределения многомерной случайной величины.
- •3)Вероятность попадания двумерной случайной величины в полуполосу и прямоугольник.
- •4)Числовые характеристики системы двух случайных величин
- •Тема 8. Закон больших чисел
- •2)Неравенство и теорема Чебышева
- •3)Понятие о центральной предельной теореме
- •Часть II. Математическая статистика
- •Тема 10. Вариационные ряды распределения
- •1) Понятие и виды вариационных рядов распределения.
- •2) Графическое изображение рядов распределения и связь между ними.
- •1) Понятие и виды вариационных рядов распределения
- •2) Графическое изображение рядов распределения и связь между ними.
- •1) Средняя арифметическая и ее свойства.
- •2) Дисперсия ряда распределения и ее свойства. Среднее квадратическое отклонение.
- •3)Моменты ряда распределения и связь между ними
- •Тема 11. Выборочный метод
- •2)Статистические оценки выборочной совокупности и их свойства.
- •3) Точечные и интервальные оценки.
- •Тема 12. Проверка статистических гипотез
- •1)Понятие и виды статистических гипотез.
- •2)Статистический критерий проверки гипотез.
- •3)Уровень значимости. Мощность критерия.
- •2)Статистический критерий проверки гипотез
- •Тема 13. Дисперсионный анализ
- •1)Понятие и модели дисперсионного анализа.
- •2)Однофакторный дисперсионный анализ.
- •1)Понятие и модели дисперсионного анализа.
- •2)Однофакторный дисперсионный анализ.
- •4.1.2.3. Двухфакторный дисперсионный анализ. Факторы а и в
- •Тема 14. Корреляционно-регрессионный анализ
- •1)Понятие корреляционной зависимости.
- •2) Оценка методом наименьших квадратов коэффициентов регрессии
- •Тема 15. Статистический анализ временных рядов
- •1)Понятие экономического временного ряда и его составляющие.
- •2)Тренд динамического ряда.
- •2)Тренд динамического ряда
Тема 8. Закон больших чисел
1) Сущность закона больших чисел и его значение в статистике и экономике.
2)Неравенство и теорема Чебышева.
3)Понятие о центральной предельной теореме.
1) Сущность закона больших чисел и его значение в статистике и экономике.
Под законом больших чисел в теории вероятностей понимается совокупность теорем, в которых устанавливается связь между средним арифметическим достаточно большого числа случайных величин и средним арифметическим их математических ожиданий.
В повседневной жизни, бизнесе, научных исследованиях мы постоянно сталкиваемся с событиями и явлениями с неопределённым исходом. Например, торговец не знает, сколько посетителей придёт к нему в магазин, бизнесмен не знает курс доллара через 1 день или год; банкир – вернут ли ему заём в срок; страховые компании – когда и кому придётся выплачивать страховое вознаграждение.
Развитие любой науки предполагает установление основных закономерностей и причинно-следственных связей в виде определений, правил, аксиом, теорем.
Связующим звеном между теорией вероятностей и математической статистикой являются так называемые предельные теоремы, к которым относится закон больших чисел. Закон больших чисел определяет условия, при которых совокупное воздействие множества факторов приводит к результату, не зависящего от случая. В самом общем виде закон больших чисел сформулировал П.Л.Чебышев. Большой вклад в изучение закона больших чисел внесли А.Н.Колмогоров, А.Я.Хинчин, Б.В.Гнеденко, В.И.Гливенко.
К предельным теоремам относится также так называемая Центральная предельная теорема А.Ляпунова, определяющая условия, при которых сумма случайных величин будет стремиться к случайной величине с нормальным законом распределения. Эта теорема позволяет обосновать методы проверки статистических гипотез, корреляционно-регрессионный анализ и другие методы математической статистики.
Дальнейшее развитие центральной предельной теоремы связано с именами Линденберга, С.Н. Бернштейна, А.Я. Хинчина, П.Леви.
Практическое применение методов теории вероятностей и математической статистики основано на двух принципах, фактически основывающихся на предельных теоремах:
принцип невозможности наступления маловероятного события;
принцип достаточной уверенности в наступлении события, вероятность которого близка к 1.
В социально – экономическом смысле под законом больших чисел понимается общий принцип, в силу которого количественные закономерности, присущие массовым общественным явлениям, отчетливо проявляются лишь в достаточно большом числе наблюдений. Закон больших чисел порожден особыми свойствами массовых социальных явлений. Последние, в силу своей индивидуальности, отличаются друг от друга, а также имеют нечто общее, обусловленное их принадлежностью к определенному виду, классу, к определенным группам. Единичные явления в большей степени подвержены воздействию случайных и несущественных факторов, чем масса в целом. В большом числе наблюдений взаимно погашаются случайные отклонения от закономерностей. В результате взаимопогашения случайных отклонений средние, исчисленные для величин одного и того же вида, становятся типичными, отражающими действие постоянных и существенных факторов в данных условиях места и времени. Тенденции и закономерности, вскрытые с помощью закона больших чисел, - это массовые статистические закономерности.