Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
pat_fiza / Повреждение клетки.doc
Скачиваний:
74
Добавлен:
18.05.2015
Размер:
462.34 Кб
Скачать

Часть I. Общая нозология

Наиболее известные антиоксиданты

Таблица 10

Антиоксидант

Действие

Церулоплазмин (плазма крови)

Окисляет Fe2* до Fe3+ молекулярным кислородом

Апо-белок трансферрина (плазма крови)

Связывает Fe3*

Ферритин (цитоплазма)

Окисляет Fe2*n депонирует Fe3'

Карнозин

Связывает Fe2*

Супероксиддисмутазы (повсеместно)

Удаляют супероксид с образованием пероксида водорода

Каталаза (внутри клеток)

Разлагает пероксид водорода с выделением кислорода

Глутатионпероксидазы (в цитоплазме)

1. Удаляют пероксид водорода за счет окисления глутатиона

2. Удаляют гидроперекиси липидов

Глутатионредуктаза

Восстанавливает окисленный глутатион

Токоферол, тироксин, стероиды

Перехватывают радикалы липидов

Аскорбиновая кислота

Регенерирует окисляющиеся токоферол и убихинон

Глутатион

Используется для восстановления пероксидов

липидов может стать повреждение этих моле­кул со всеми вытекающими последствиями.

Наиболее чувствительны к переписному окис­лению липидов сульфгидрильные, или тиоловые, группы (- SH) мембранных белков: ферментов, ионных каналов и насосов. В ходе окисления тиоловых групп образуются радикалы (- S), ко­торые затем либо взаимодействуют друг с дру­гом с образованием дисульфидов (- SS-), либо связываются с кислородом с образованием суль­фитов и сульфатов (- S03 и - S04). Большую роль в патологии клетки играет также повреждение ионтранспортирующих ферментов (например, Ca2t , М£2+-АТФазы), в активный центр которых входят тиоловые группы (рис. 12-1). Инактива­ция Са2+-АТФазы приводит к замедлению отка­чивания из клетки ионов кальция и ускорению их «протечки» в клетку (где их концентрация меньше). Это вызывает рост уровня ионов каль­ция в цитоплазме и повреждение клеточных структур.

Окисление тиоловых групп мембранных бел­ков приводит к появлению дефектов в мембра­нах клеток и митохондрий. Под действием элек­трического поля через такие дефекты в клетки входят ионы натрия, а в митохондрии - ионы калия. В результате происходит увеличение ос­мотического давления внутри клеток и митохон­дрий и их набухание. Это приводит к еще боль­шему повреждению мембранных структур.

Еще одним интересным примером может слу­жить окисление белков и последующее образо-

вание белковых агрегатов в хрусталике глаза, вызванное пероксидацией липидов. Процесс при­водит к помутнению хрусталика и может счи­таться одной из причин развития старческой и других видов катаракты у человека.

Наряду с белками и нуклеиновыми кислота­ми мишенью повреждающего действия перекис­ного окисления служит сам липидный бислой. Было показано, что продукты перекисного окис­ления липидов делают липидную фазу мембран проницаемой для ионов водорода и кальция (рис. 12-2; 12-3). Это приводит к тому, что в митохон­дриях окисление и фосфорилирование разобща­ются и клетка оказывается в условиях энерге­тического голода. Одновременно из митохондрий в цитоплазму выходят ионы кальция, которые повреждают клеточные структуры (см. выше).

Но, быть может, самый важный результат пероксидации - это уменьшение электрической стабильности липидного слоя, которое приво­дит к электрическому пробою мембраны собствен­ным мембранным потенциалом (рис. 12-4). Элек­трический пробой вызывает полную потерю мем­браной ее барьерных функций.

Клеточные системы защиты от поврежде­ния свободными радикалами. Свободные ради­калы преследовали живую материю с первых же моментов ее появления на Земле, и неудивитель­но, что в ходе эволюции клетки и организм в целом выработали нечто подобное глубокоэше-лонированной обороне, которая включает в себя ферменты и низкомолекулярные соединения, в

Соседние файлы в папке pat_fiza