Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Kluwer - Handbook of Biomedical Image Analysis Vol

.3.pdf
Скачиваний:
115
Добавлен:
10.08.2013
Размер:
16.35 Mб
Скачать

530

Veress, Phatak, and Weiss

[80]Weidemann, F., Kowalski, M., D’Hooge, J., Bijnens, B., and Sutherland,

G.R., Doppler myocardial imaging. A new tool to assess regional inhomogeneity in cardiac function, Basic Res. Cardiol., Vol. 96, No. 6, pp. 595–605, 2001.

[81]D’Hooge, J., Konofagou, E., Jamal, F., Heimdal, A., Barrios, L., Bijnens, B., Thoen, J., Van de Werf, F., Sutherland, G., and Suetens, P., Two-dimensional ultrasonic strain rate measurement of the human heart in vivo, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., Vol. 49, No. 2, pp. 281–286, 2002.

[82]D’Hooge, J., Heimdal, A., Jamal, F., Kukulski, T., Bijnens, B., Rademakers, F., Hatle, L., Suetens, P., and Sutherland, G. R., Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations, Eur. J. Echocardiogr., Vol. 1, No. 3, pp. 154–170, 2000.

[83]Bolster, B. D., Jr., McVeigh, E. R., and Zerhouni, E. A., Myocardial tagging in polar coordinates with use of striped tags, Radiology, Vol. 177, No. 3, pp. 769–772, 1990.

[84]Zerhouni, E. A., Parish, D. M., Rogers, W. J., Yang, A., and Shapiro,

E.P., Human heart: Tagging with MR imaging—A method for noninvasive assessment of myocardial motion, Radiology, Vol. 169, No. 1, pp. 59–63, 1988.

[85]Buchalter, M. B., Weiss, J. L., Rogers, W. J., Zerhouni, E. A., Weisfeldt,

M.L., Beyar, R., and Shapiro, E. P., Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging, Circulation, Vol. 81, No. 4, pp. 1236–1244, 1990.

[86]McVeigh, E. R. and Atalar, E., Cardiac tagging with breath-hold cine MRI, Magn. Reson. Med., Vol. 28, No. 2, pp. 318–327, 1992.

[87]McVeigh, E. R. and Zerhouni, E. A., Noninvasive measurement of transmural gradients in myocardial strain with MR imaging, Radiology, Vol. 180, No. 3, pp. 677–683, 1991.

Deformable Image Registration with Hyperelastic Warping

531

[88]Axel, L., Goncalves, R. C., and Bloomgarden, D., Regional heart wall motion: Two-dimensional analysis and functional imaging with MR imaging, Radiology, Vol. 183, No. 3, pp. 745–750, 1992.

[89]Ungacta, F. F., Davila-Roman, V. G., Moulton, M. J., Cupps, B. P., Moustakidis, P., Fishman, D. S., Actis, R., Szabo, B. A., Li, D., Kouchoukos,

N.T., and Pasque, M. K., MRI-radiofrequency tissue tagging in patients with aortic insufficiency before and after operation, Ann. Thorac Sur., Vol. 65, No. 4, pp. 943–950, 1998.

[90]Sinusas, A. J., Papademetris, X., Constable, R. T., Dione, D. P., Slade, M. D., Shi, P., and Duncan, J. S., Quantification of 3-D regional myocardial deformation: Shape-based analysis of magnetic resonance images, Am. J. Physiol. Heart Circ. Physiol., Vol. 281, No. 2, pp. H698–714, 2001.

[91]Berne, R. M. and Levy, M. N., Physiology, Mosby Year Book, St. Louis, MO, 1998.

[92]Maker, B. N., Ferencz, R., and Hallquist, J., NIKE3D: A nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics. Lawrence Livermore National Laboratory Report

# UCRL-MA-105268, Rev. 1, 1995.

[93]Ramani, K., Judd, R. M., Holly, T. A., Parrish, T. B., Rigolin, V. H., Parker,

M.A., Callahan, C., Fitzgerald, S. W., Bonow, R. O., and Klocke, F. J., Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction, Circulation, Vol. 98, No. 24, pp. 2687–2694, 1998.

[94]Kim, R. J., Wu, E., Rafael, A., Chen, E. L., Parker, M. A., Simonetti, O., Klocke, F. J., Bonow, R. O., and Judd, R. M., The use of contrastenhanced magnetic resonance imaging to identify reversible myocardial dysfunction, N. Engl. J. Med., Vol. 343, No. 20, pp. 1445–1453, 2000.

[95]Szolar, D. H., Saeed, M., Wendland, M. F., Sakuma, H., Roberts,

T.P., Stiskal, M. A., Derugin, N., and Higgins, C. B., MR imaging characterization of postischemic myocardial dysfunction (“stunned myocardium”): Relationship between functional and perfusion abnormalities, J. Magn. Reson. Imaging, Vol. 6, No. 4, pp. 615–624, 1996.

532

Veress, Phatak, and Weiss

[96]Wu, E., Judd, R. M., Vargas, J. D., Klocke, F. J., Bonow, R. O., and Kim, R. J., Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction, Lancet, Vol. 357, No. 9249, pp. 21–28, 2001.

[97]Gerber, B. L., Garot, J., Bluemke, D. A., Wu, K. C., and Lima, J. A., Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction, Circulation, Vol. 106, No. 9, pp. 1083–1089, 2002.

[98]Choi, K. M., Kim, R. J., Gubernikoff, G., Vargas, J. D., Parker, M., and Judd, R. M., Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function, Circulation, Vol. 104, No. 10, pp. 1101–1107, 2001.

[99]Costa, K. D., Hunter, P. J., Wayne, J. S., Waldman, L. K., Guccione, J. M., and McCulloch, A. D., A three-dimensional finite element method for large elastic deformations of ventricular myocardium, Part II: Prolate spheroidal coordinates, J. Biomech. Eng. Vol. 118, No. 4, pp. 464–472, 1996.

[100]Costa, K. D., Hunter, P. J., Rogers, J. M., Guccione, J. M., Waldman, L. K., and McCulloch, A. D., A three-dimensional finite element method for large elastic deformations of ventricular myocardium, Part I: Cylindrical and spherical polar coordinates, J. Biomech. Eng., Vol. 118, No. 4, pp. 452–463, 1996.

[101]Guccione, J. M., McCulloch, A. D., and Waldman, L. K., Passive material properties of intact ventricular myocardium determined from a cylindrical model, J. Biomech. Eng., Vol. 113, No. 1, pp. 42–55, 1991.

[102]Needleman, A., Rabinowitz, S. A., Bogen. D. K., and McMahon. T. A., A finite element model of the infarcted left ventricle, J. Biomech., Vol. 16, No. 1, pp. 45–58, 1983.

[103]Vito, R. P. and Hickey, J., The mechanical properties of soft tissues, Part II: The elastic response of arterial segments, J. Biomech., Vol. 13, No. 11, pp. 951–957, 1980.

Deformable Image Registration with Hyperelastic Warping

533

[104]Vito, R. P., The mechanical properties of soft tissues, Part I: A mechanical system for bi-axial testing, J. Biomech., Vol. 13, No. 11,

pp.947–950, 1980.

[105]Allaire, P. E., Thacker, J. G., Edlich, R. F., Rodeheaver, G. J., and Edgerton, M. T., Finite deformation theory for in vivo human skin, J. Bioeng., Vol. 1, No. 3, pp. 239–249, 1977.

[106]Gardiner, J. C., Weiss, J. A., and Rosenberg, T. D., Strain in the human medial collateral ligament during valgus loading of the knee, Clin. Orthopaedics, No. 391, pp. 266–274, 2001.

[107]Gardiner, J. C. and Weiss, J. A., Effects of flexion angle and valgus rotation on stresses in the human medial collateral ligament, Proc. ASME Bioeng. Conf., Vol. BED-35, pp. 27–28, 1997.

[108]Quapp, K. M. and Weiss, J. A., Material characterization of human medial collateral ligament, J. Biomech. Eng., Vol. 120, No. 6,

pp.757–763, 1998.

[109]Weiss, J. A., Gardiner, J. C., and Quapp, K. M., Material models for the study of soft tissue mechanics, Proceeding of the International Conference on Pelvic and Lower Extremity Injuries, December 4–6, 1995, pp. 249–261.

[110]Johnson, H. J. and Christensen, G. E., Consistent landmark and intensity-based image registration, IEEE Trans. Med. Imaging, Vol. 21, No. 5, pp. 450–461, 2002.

[111]Christensen, G. E. and Johnson, H. J., Consistent image registration, IEEE Trans. Med. Imaging, Vol. 20, No.7, pp. 568–582, 2001.

[112]Maintz, J. B. and Viergever, M. A., A survey medical image registration, Med. Image Anal., Vol. 2, No. 1, pp. 1–36, 1998.

Chapter 13

Future of Image Registration

Jasjit Suri,1 Baowei Fei,2 David Wilson,2

Swamy Laxminarayan,3 Chi-Hsiang Lo,4 Yujun Guo,5

Cheng-Chang Lu,5 and Chi-Hua Tung6

13.1 Future Application of Image Registration

Image registration will have more and more applications in the future. Below are a few predictions on where image registration will lead to in the next few years, and where to expect significant progress.

13.1.1 Small Animal Imaging

Small animal imaging is a fast-growing field that has numerous applications in the studies of functional genomics, the biology of disease, and therapeutics. Since commonly, functional imaging modalities such as single photon emission tomography (SPECT), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have little anatomic information, images acquired from computed tomography (CT) or MRI are used to provide structural identification and localization of organs/regions of interest and may also provide additional diagnostic information. Automatic image registration and fusion visualization methods will be very useful for this new and important application.

1 Senior IEEE Member, CWRU, Cleveland, USA.

2 Biomedical Engineering Department and Department of Radiology, CWRU, Cleveland,

USA.

3 Idaho State University, Pocatello, ID.

4 National Ilan University, Taiwan.

5 Kent State University, USA.

6 Philips Medical Systems, USA.

535

536

Suri et al.

13.1.2 Perfusion Studies

Perfusion imaging is likely to have many clinical applications. For example, cardiac MR imaging is progressing fast and the applications in tumor metabolism and angiogenesis is driving advances in MR imaging for oncology. Image registration will be essential, enabling technologies for perfusion imaging where patients may not be able to maintain the same position during long dynamic studies.

13.1.3 Registration for Image-Guided Interventions

Interventional MR, CT, X-ray fluoroscopy, and ultrasound, as well as optical images from endoscopes, microscopes, and arrays of free-standing cameras are used for image guided procedures. However, many image-guided surgery systems are currently restricted to applications in which patient anatomy can be treated as a rigid body. These technologies have great potential in soft tissues away from the bone. Registration methods could be used to update the spatial information in accurate and detailed representations of the patient, generated from preoperative images. This information could be incorporated into interventional procedures that often use incomplete and much lower quality information from intraoperative images.

13.1.4Registration of Electronic Data Set with Anatomical Images

Multimedia electronic data sets can be incorporated with radiological images as well as other context-based information: for example, registration of EEG with MR images. Integrating this information and relating it to atlas data could be achieved transparently with the potential for improved diagnosis and decision support.

13.1.5Deformation Fields Generated by Nonrigid Registration

Nonrigid image registration methods have great potential beyond simply lining up images. The deformation field produced by nonrigid registration algorithms can quantify normal development and contribute to an understanding of disease

Future of Image Registration

537

processes and aging. Nonrigid registration algorithms will be reliable enough for clinical applications and provide valuable tools for diagnosis and for monitoring disease progression.

13.1.6 Combination of Registration and Segmentation

Good segmentation can be achieved by lining up images to an atlas using the image registration algorithm. Labeled structures in the atlas can then be used to split up the images into anatomical and pathological components for visualization or quantification. For example, registration and segmentation of plaque images may allow the detecting of much of more subtle changes.

13.1.7 Registration to Data Acquisition

Registration is beginning to be used to improve data acquisition. For example, online registration can be used to dynamically adjust slice position in MR scans to compensate prospectively for motion correction. Spectroscopic or perfusion acquisitions can be defined to interrogate specific tissues of interest, delineated in a previously acquired high resolution image, rather than a fixed region relative to the scanner. Specific tissue regions could be followed as the patient moves or is repositioned. These applications are likely to grow as algorithms become faster and scanner computing power increases.

13.2A Multiresolution Approach to Medical Image Registration Using Binning Technique

Medical image registration has been applied to the diagnosis of cardiac studies and a variety neurological disorders including brain tumors. Image registration, or alignment, is the process of aligning two images so that corresponding features of the images can be easily related. Registration using different modalities is widely used in many medical applications. In practice, the complementary information acquired from the registration of multiple imaging modalities can be used for medical diagnosis and treatment planning. In recent years many registration algorithms for medical imaging have been designed. Typically an

538

Suri et al.

algorithm falls into one of three categories: algorithms that use a landmarkbased method, algorithms that use a surface-based method, or algorithms that work directly on the image intensities (voxel-based). Maintz et al. [1] gave a survey of registration methods.

For automated registration a quality measure of the registration is necessary in order to find an optimal registration. Maximization of mutual information (MI) of voxel intensities, the registration method independently proposed by Wells et al. [2] and Maes et al. [3], is one of the most popular registration methods for three-dimensional multimodality medical image registration. This method measures the statistical dependence between the image intensities of corresponding voxels in two images; this statistical dependence is maximal when the images are totally aligned.

Intensity-based methods regard all voxels in the images as independent, thus, anatomical information is not taken into consideration. Maurer et al. [4] and Gall et al. [5] exploited landmark-based methods. Audette et al. [6] gave an overview on surface registration techniques. Landmark-based methods and surface-based methods utilize features extracted from the images. The required preprocessing is usually time-consuming and the accuracy of the registration is dependent on the correctness of the landmark or surface extraction.

We have developed a two-stage method, which is both feature-based and intensity-based. Three binning methods were utilized and the performance of each is compared in this chapter. In the first stage, we segment the images using region-growing. Then we perform one of the three binning methods on the full foreground before the down-sampled images are registered. In the second stage, the results from the first stage are taken as the starting point for the registration of the full original images. Experiments show that this new two-stage method gives improved accuracy without loss of speed, compared to multiresolution registration without bin preprocessing. Of the three binning techniques used, the nonlinear binning method gave the best performance. Normalized mutual information (NMI) is used as the similarity measure, and downhill simplex method is taken as the optimization method due to its quickness in practice.

13.2.1 Image Registration Using Binning Technique

Registration based on maximization of mutual information uses an iterative ap-

proach in which an initial estimate of the transformation is gradually refined.

Future of Image Registration

539

One of the difficulties with this approach is that it can converge to a local optimum instead of a global optimum. Using multiresolution in conjunction with maximization of mutual information is very helpful when tackling this problem. The work of Maes et al. [8], Studholme et al. [7] and Pluim et al. [9, 10], has proved this. The idea of a multiresolution hierarchical approach is to register the coarse (low resolution) image first and then to use the result as the starting point for finer (high resolution) image registration, and so on.

In order to use NMI, an estimation of the intensity distribution is required. There are a couple of methods used to estimate the intensity distribution of an image. Colligon et al. [11] used joint entropy as the registration criterion. Viola [12] obtained the estimation by Parzen, windowing an intensity distribution. Camp et al. [13] proposed a binning method for registration using normalized mutual information. The image intensities are assigned to a histogram bin by a binning technique. The most commonly used binning method is equidistant binning. With equidistant binning, once the bin number is given, the intensities range assigned to each bin is also determined, after the overall image intensity range is distributed evenly among all the bins. The weakness of the equidistant binning method is that it totally ignores the anatomical information of the image. From typical histograms of CT and MR images, as shown in Fig. 13.1 and Fig. 13.2, we can spot the same property: a giant peak around the intensities of the background region. In our approach, we use region-growing to separate the

Number of Voxels

8105

6105

4105

2105

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−2 105

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−2000

−1000

0

1000

2000

3000

 

 

 

 

 

 

 

 

 

Intensity

 

 

 

 

 

 

 

Figure 13.1: A typical histogram for a CT image.

540

Suri et al.

Number of Voxels

3.0104

2.5104

2.0104

1.5104

1.0104

5.0103

0

−5.0103

0

500

1000

1500

2000

2500

 

 

Intensity

 

 

Figure 13.2: A typical histogram for an MR image.

background region first. Then all the background region voxels are put into one bin, while the foreground region voxels are binned using a binning technique. Two-level multiresolution registration method is applied next. For binning we have experimented three techniques.

13.2.1.1 Region-growing

Region-growing is an approach to image segmentation that has received considerable attention in the computer vision segment of the artificial intelligence community [14]. The basic approach is to start with a set of “seed” points and from these grow regions by appending to each seed those neighboring voxels that have properties similar to the seed [15].

In our approach, a seed point is selected automatically near the left-upper corner of the given CT and MR images. This is based on the observation that there is always a large background area and that the object is always centered.

This seed point is used to begin region-growing for the background. There are two criteria for a voxel to be annexed to the background: (1) the absolute intensity difference between the voxel and the seed must be less than a threshold; and (2) the voxel must be adjacent to at least one voxel in the background. The threshold for the region is determined by the histogram, see Figs. 13.1 and 13.2. In the figures the spike at the left delimits the background and so the valley to