
- •Министерство образования и науки Российской Федерации
- •Содержание
- •Лабораторные работы по разделу:
- •I. "Охрана труда на проиводстве"
- •Практические занятия по разделу:
- •II. "безопасность в чрезвычайных ситуациях"
- •Введение Уважаемые студенты!
- •Лабораторная работа
- •Исследование параметров микроклимата
- •Производственного помещения
- •Методические указания
- •1. Основные положения
- •2. Измерение температуры воздуха
- •3. Определение влажности воздуха
- •4. Определение скорости движения воздуха
- •5. Отчет о результатах исследования параметров микроклимата помещений
- •Протокол измерения относительности влажности воздуха
- •Протокол измерения скорости движения воздуха
- •Расчет кратности воздухообмена в помещении Методические указания
- •1. Кратность воздухообмена в помещении
- •2. Условия достижения требуемой кратности воздухообмена путем естественной аэрации
- •3. Примеры расчета воздухообмена
- •Воспользуемся формулой (5):
- •4. Контрольные задания студентам
- •Исследование эффективносТи и качестВа освещения Методические указания
- •Порядок выполнения работы:
- •1. Общие сведения
- •1.1 Светотехнические характеристики освещения
- •1.2 Искусственное освещение
- •1.3 Источники искусственного освещения
- •1.4 Нормирование искусственного освещения
- •1.5 Коэффициент использования осветительной установки
- •2. Лабораторная установка для измерения освещенности
- •2.1 Описание лабораторной установки
- •2.2 Требования безопасности при обращении с лабораторной установкой
- •3. Прибор для измерения освещенности
- •4. Порядок проведения лабораторной работы
- •5. Отчет о работе
- •Допустимая наименьшая освещенность рабочих поверхностей в производственных помещениях (по сНиП 23-05-95)
- •Измерение уровней шума Методические указания
- •1. Общие положения
- •Основные характеристики и единицы измерения шума
- •Классификация шума
- •Действие шума на человека
- •Нормирование шума
- •Описание прибора для выполнения измерений уровня звука
- •Порядок работы на измерителе уровня звука атт-9000
- •Исследование шумовых характеристик
- •Отчет о проведенных измерениях
- •Примерная форма отчета о лабораторной работе (шум в аудитории)
- •Лабораторная работа вибрация и способы защиты от неё Методические указания
- •1. Теоретические основы
- •1.1 Классификация вибрации
- •А) Общая вибрация
- •Б) Локальная вибрация
- •И локальной (б) вибраций
- •1.2 Нормируемые показатели вибрационной нагрузки
- •1.3 Воздействие вибрации на человека
- •2. Способы защиты от вибрации
- •3. Содержание работы
- •3.1. Описание лабораторного стенда
- •1. Подставка под видростенд. 2. Вибростенд. 3. Видростол. 4. Объект виброизоляции.
- •5. Измеритель шума и вибрации вшв-003-м2. 6. Генератор низкочастотных сигналов.
- •7. Ящик для хранения виброзащитных модулей. 8. Виброзащитный модуль.
- •9. Клеммы для подключения.
- •1. Защитный разъемный кожух. 2. Горизонтальная пластина. 3. Магнитопроводящий корпус. 4. Основание. 5. Постоянный магнит. 6. Катушка возбуждения. 7. Вибростол.
- •8. Защитная резиновая прокладка. 9. Листовая пружина
- •4. Требования по техники безопасности
- •5. Описание прибора для измерения параметров вибрации
- •5.1. Измерения вибрации выполняются на приборе измерителе шума и вибрации вшв-003-м2
- •5.2 Подготовка прибора к работе
- •6. Порядок выполнения работы
- •7. Отчет о работе
- •Лабораторная работа Исследование защиты от теплового излучения Методические указания
- •Общие сведения
- •Средства и меры защиты от теплового излучения
- •Описание стенда исследования защиты от теплового излучения
- •4. Общие сведения об радиометре «Аргус-03»
- •5. Порядок выполнения работы на стенде
- •6. Отчет о выполненной работе
- •Исследование Защиты от сверхвысокочастотного излучения Методические указания
- •Общие сведения
- •Спектр электромагнитных волн
- •Предельно допустимая напряженность эмп радиочастот в диапазоне 0,06-300 мГц на рабочих местах
- •2. Средства и меры защиты от свч - излучения
- •Типы экранов
- •3. Содержание работы
- •3.1. Описание стенда
- •1. Металлический сварной каркас, 2. Дверцы шкафа; 3. Столешница;
- •4. Координатное устройство; 5. Свч-печь; 6. Датчик;
- •7. Микроамперметр; 8. Пазы.
- •«Защиты от свч – излучений»
- •3.2 Технические характеристики стенда
- •3.3 Требование по технике безопасности
- •4. Порядок выполнения работы
- •5. Отчет о лабораторной работе
- •Анализ опасности поражения человека электрическим током трехфазных сетей напряжением до 1 кВ Методические указания
- •1. Общие сведения
- •1.1 Действие электрического тока на организм человека
- •1.2 Виды поражения электрическим током
- •1.3 Виды трехфазных электрических сетей
- •1.4 Двухфазное прикосновение
- •1.5 Однофазное прикосновение
- •1.6 Трехфазная четырехпроводная сеть с глухозаземленной нейтралью
- •1.7 Трехфазная трехпроводная сеть с изолированной нейтралью
- •2. Описание лабораторного стенда
- •3. Требования безопасности при выполнении работы
- •4. Порядок выполнения измерений
- •5. Отчет о лабораторной работе
- •Оценка эффективности действия защитного заземления Методические указания
- •1. Теоретические основы
- •2. Стендовые измерения показателей эффективности защитного заземления
- •2.1. Оценка эффективности действия защитного заземления в сети с изолированной нейтралью
- •2.2. Оценка эффективности действия защитного заземления в сети с изолированной нейтралью при двойном замыкании на заземленные корпуса электроустановок
- •2.3. Оценки эффективности действия защитного заземления в сети с заземленной нейтралью
- •Результаты работы
- •Описание лабораторного стенда «Защитное заземление и зануление»
- •Оценка эффективности действия зануления Методические указания
- •1.Теоретические основы
- •С напряжением до 1 кВ
- •Нулевого защитного проводника
- •2. Измерение показателей
- •2.1 Определение времени срабатывания автоматов защиты и тока короткого замыкания при замыкании фазного провода на корпус при различном сопротивлении петли "фаза - нуль"
- •2.2. Оценка эффективности действия в сети с повторным заземлением нулевого защитного проводника (ре)
- •2.3. Оценка эффективности повторного заземления при обрыве нулевого защитного проводника
- •3. Результаты работы
- •Практическое занятие
- •Общие положения
- •Нанесение химической обстановки на карту
- •3. Оценка последствий воздействия ахов
- •Измерение радиоактивных излучений Методические указания
- •1. Теоретические основы измерения радиоактивного излучения
- •1.1. Общие положения радиационной безопасности
- •1.2. Краткие сведения об ионизирующем излучении
- •1.3. Основные величины и единицы радиоактивности
- •1.4. Воздействие ионизирующего излучения на человека
- •1.5. Нормы и дозы облучения
- •1.6. Радиационный контроль
- •2. Методика измерений ионизирующего излучения
- •2.1. Назначение, техническая характеристика, устройство и принцип действия дозиметра-радиометра дргб-01-«эко-1»
- •2.2. Подготовка прибора к работе
- •2.3. Методика измерения значения мощности экспозиционной дозы фотонного излучения (мэд)
- •2.4. Методика измерения удельной активности радиоактивных источников в пробах
- •2.5. Методика измерения плотности потока бета-частиц от загрязненных поверхностей
- •3. Выполнение измерений радиоктивного излучения
- •3.1. Контрольные вопросы
- •3.2. Измерения эталонного источника радиоактивного излучения
- •3.3. Измерение радиационного гамма фона в рабочем помещении и на местности
- •Измерение удельной активности радионуклидного источника в продуктах и материалах
- •3.5. Измерение плотности потока бета-частиц от загрязненных поверхностей
- •3.6. Типовая форма отчета о выполненной практической работе
- •Оценка радиационной обстановки после аварии на аэс Методические указания
- •1. Нанесение радиационной обстановки на карту
- •1.1 Нанесение радиационной обстановки методом прогноза
- •1.2 Нанесение радиационной обстановки по данным разведки
- •2. Зоны возможных доз облучения
- •2.1 Определение возможных доз облучения в первые часы и сутки после аварии на яэу
- •2.2 Определение возможных доз облучения при длительном пребывании людей в зонах разм
- •Примеры
- •Количественная оценка затекания аэрозолей в помещения через неплотности извне Методические указания
- •I. Теоретические основы
- •1. Проникание аэрозоля внутрь помещений
- •2. Расчет величины потока воздуха, проникающего в объект
- •3. Расчет доли частиц (аэрозоля), остающихся внутри помещения
- •II. Последовательность выполнения работы
- •1. Получение и обработка исходных данных
- •2. Расчет параметров проникания аэрозоля
- •III. Отчет о выполнении работы
- •1. Исходные данные:
- •2. Расчетные параметры:
- •1. Получение и обработка исходных данных
- •1.1 Определяем параметры помещения, указанного преподавателем
- •1.2 Определяем вероятность “продувания” стенки помещения со стороны отверстий в течение месяца
- •1.3 Определяем скорость ветра с наветренной и подветренной сторон
- •1.5 Определяем интервал времени, в течение которого обеспечивается проникание радионуклидов
- •2. Расчет параметров проникания радионуклидов
- •Форма отчета (пример)
- •1. Исходные данные:
- •2. Полученные результаты:
- •Оценка последствий Аварии на гидротехническом объекте Методические указания
- •Теоретические основы
- •1.1 Аварии на гидротехнических объектах
- •1.1.1 Гидротехнические сооружения
- •1.1.2 Естественные гидродинамические объекты
- •1.1.3 Классификация гидротехнических сооружений
- •1.1.4 Методы наблюдений за деформациями гидросооружений
- •1.1.5 Поражающее действие волны прорыва гидротехнических объектов
- •2. Прогнозирование поражающего действия волны прорыва и зон затопления
- •3. Защита населения от поражающего действия волны прорыва и последующих затоплений
- •3.1 Общие положения по защите населения
- •3.2 Действия населения в условиях угрозы разрушения плотины (гидротехнического сооружения)
- •Исходные данные для расчета параметров волны прорыва
- •Расчетные параметры волны прорыва
- •Методика определения риска Методические указания
- •1. Введение
- •2. Методология риска
- •Методика определения риска
- •Картографирование риска
- •Практические задачи
- •Классификация профессиональной опасности
- •Ориентирование во времени и пространстве Методические указания
- •I. Ориентирование во времени
- •1.1 Солнечные и звездные сутки
- •1.2 Определение времени по Солнцу
- •1.3. Определение времени по Солнцу и компасу
- •1.4. Определение времени по созвездию Большая Медведица
- •6 Усл. Ч. Около 22 сентября
- •1.5. Определение времени по Луне и компасу
- •2.Ориентирование в пространстве
- •2.1. Определение сторон горизонта по Солнцу, Луне и звездам
- •Во вторую половину дня
- •2.2. Определение сторон горизонта по растениям и животным
- •2.3 Определение сторон горизонта по рельефу, почвам, ветру, и снегу
- •2.4. Определение сторон горизонта по постройкам
- •На церковном куполе
- •3. Особенности ориентирования в различных природных условиях
- •3.1. Ориентирование по звуку
- •3.2. Ориентирование по свету
- •3.3. Ориентирование в Арктике и Антарктиде
- •3.4. Ориентирование в тундре и лесотундре
- •3.5 Ориентирование в лесу
- •3.6 Ориентирование в степи и в пустыне
- •3.7 Ориентирование в горах
- •3.8 Ориентирование на реках и озерах
- •3.9 Ориентирование на морях и океанах
3.8 Ориентирование на реках и озерах
Несмотря на широкое применение искусственных сигналов на реках и озерах, значение естественных ориентиров очень велико, и они успешно дополняют и контролируют один другого.
От характера течения и рельефа дна в значительной степени зависит вид поверхности реки, что позволяет судить о ее глубине и определять местонахождение препятствий в русле.
Днем в тихую погоду поверхность воды над мелкими местами - косами, застругами, седловинами, гребнями перекатов и подводными осередками - бывает обычно более ровная и светлая, чем на глубине, где она имеет волнистый вид и темный цвет.
Естественное подводное препятствие обнаруживается на поверхности воды, где вода рябит. Если воды над препятствием немного, то она переливает через него, а ниже "взмарывает". Обычно над препятствием поверхность воды гладкая.
Чем больше разность глубин, тем более резко отличаются отдельные места в русле по цвету и волнистости поверхности воды. Ночью мелкие места имеют беловатый оттенок, а глубокие - темный.
3.9 Ориентирование на морях и океанах
Несмотря на прекрасное современное оборудование флота, моряки не должны пренебрегать знаниями естественных особенностей и закономерностей природы моря, не переставать пытливо изучать ее.
Плавание в морях и океанах сопровождается сравнительно быстрой и резкой сменой природных явлений, что может служить признаком в ориентировании при приближении судна к суше, мелководью, льдам, рифам и т.д.
Появление ныряльщика-баклана и обычной медузы-аурелли у малознакомых берегов предупреждает о близости рифов.
В бурном Беринговом море снежные бури и туманы очень затрудняют плавание. Ориентирами здесь могут служить большие птичьи базары. Во время тумана крики птиц предупреждают о близости скал. Скалы от птичьего помета приобретают белую окраску и делаются более различимыми на фоне берега или моря.
Обыкновенная крачка удаляется от тропических островов Тихого океана, где она гнездится, не далее чем на 20 миль, коричневый глупыш - на 30 миль, а белая крачка - на 100 миль. Когда эти птицы до наступления вечерних часов быстро, никуда не уклоняясь, летят высоко над морем к берегу, следует ожидать шторма.
Если дельфины собираются в косяки и больше обычного резвятся - это тоже предвещает шторм.
Появление поздней осенью на южных берегах Балтийского моря больших стай чистиков предсказывает раннюю суровую зиму.
Все морские птицы, за исключением чайки-моёвки, в полете молчаливы. Поэтому ночные крики морских птиц дают верное направление на сушу.
В Индийском и Тихом океанах появление в воде пёстро окрашенных, хорошо заметных с палубы ядовитых морских змей предупреждает о близости берега.
Моряк должен удвоить свое внимание, когда на курсе корабля на фоне морской сини, свойственной открытому водному пространству, появится вдруг гладкое или покрытое мелкими бурунчиками зелено-желтое пятно или полоса. Это явление, называемое "цветением моря", наблюдается чаще всего во внутренних морях, заливах и бухтах и указывает на близость мели.
Довольно часто при переходе из одного течения в другое обнаруживается резкое изменение цвета воды, связанное с изобилием животного или растительного планктона в одних водах и недостатком - в других. Например, красноватая от рачков вода сменяется зеленоватой от микроскопических водорослей или синей, бедной планктоном водой. Это явление помогает заметить смену одного течения другим, что важно во время хода корабля.
Подводные скалы Кукиконосаки у берегов Японии, поросшие водорослями, над которыми слой воды достигает 20 м толщины, выдают себя в тихую погоду красноватым оттенком воды, а волнение на участке этих скал совсем иное, чем рядом, над глубинами.
Звуки и шумы в морской воде от движения крупных морских животных, прохождения косяков рыбы, шум прибоя нередко могут служить хорошими ориентирами.