
- •Министерство образования и науки Российской Федерации
- •Содержание
- •Лабораторные работы по разделу:
- •I. "Охрана труда на проиводстве"
- •Практические занятия по разделу:
- •II. "безопасность в чрезвычайных ситуациях"
- •Введение Уважаемые студенты!
- •Лабораторная работа
- •Исследование параметров микроклимата
- •Производственного помещения
- •Методические указания
- •1. Основные положения
- •2. Измерение температуры воздуха
- •3. Определение влажности воздуха
- •4. Определение скорости движения воздуха
- •5. Отчет о результатах исследования параметров микроклимата помещений
- •Протокол измерения относительности влажности воздуха
- •Протокол измерения скорости движения воздуха
- •Расчет кратности воздухообмена в помещении Методические указания
- •1. Кратность воздухообмена в помещении
- •2. Условия достижения требуемой кратности воздухообмена путем естественной аэрации
- •3. Примеры расчета воздухообмена
- •Воспользуемся формулой (5):
- •4. Контрольные задания студентам
- •Исследование эффективносТи и качестВа освещения Методические указания
- •Порядок выполнения работы:
- •1. Общие сведения
- •1.1 Светотехнические характеристики освещения
- •1.2 Искусственное освещение
- •1.3 Источники искусственного освещения
- •1.4 Нормирование искусственного освещения
- •1.5 Коэффициент использования осветительной установки
- •2. Лабораторная установка для измерения освещенности
- •2.1 Описание лабораторной установки
- •2.2 Требования безопасности при обращении с лабораторной установкой
- •3. Прибор для измерения освещенности
- •4. Порядок проведения лабораторной работы
- •5. Отчет о работе
- •Допустимая наименьшая освещенность рабочих поверхностей в производственных помещениях (по сНиП 23-05-95)
- •Измерение уровней шума Методические указания
- •1. Общие положения
- •Основные характеристики и единицы измерения шума
- •Классификация шума
- •Действие шума на человека
- •Нормирование шума
- •Описание прибора для выполнения измерений уровня звука
- •Порядок работы на измерителе уровня звука атт-9000
- •Исследование шумовых характеристик
- •Отчет о проведенных измерениях
- •Примерная форма отчета о лабораторной работе (шум в аудитории)
- •Лабораторная работа вибрация и способы защиты от неё Методические указания
- •1. Теоретические основы
- •1.1 Классификация вибрации
- •А) Общая вибрация
- •Б) Локальная вибрация
- •И локальной (б) вибраций
- •1.2 Нормируемые показатели вибрационной нагрузки
- •1.3 Воздействие вибрации на человека
- •2. Способы защиты от вибрации
- •3. Содержание работы
- •3.1. Описание лабораторного стенда
- •1. Подставка под видростенд. 2. Вибростенд. 3. Видростол. 4. Объект виброизоляции.
- •5. Измеритель шума и вибрации вшв-003-м2. 6. Генератор низкочастотных сигналов.
- •7. Ящик для хранения виброзащитных модулей. 8. Виброзащитный модуль.
- •9. Клеммы для подключения.
- •1. Защитный разъемный кожух. 2. Горизонтальная пластина. 3. Магнитопроводящий корпус. 4. Основание. 5. Постоянный магнит. 6. Катушка возбуждения. 7. Вибростол.
- •8. Защитная резиновая прокладка. 9. Листовая пружина
- •4. Требования по техники безопасности
- •5. Описание прибора для измерения параметров вибрации
- •5.1. Измерения вибрации выполняются на приборе измерителе шума и вибрации вшв-003-м2
- •5.2 Подготовка прибора к работе
- •6. Порядок выполнения работы
- •7. Отчет о работе
- •Лабораторная работа Исследование защиты от теплового излучения Методические указания
- •Общие сведения
- •Средства и меры защиты от теплового излучения
- •Описание стенда исследования защиты от теплового излучения
- •4. Общие сведения об радиометре «Аргус-03»
- •5. Порядок выполнения работы на стенде
- •6. Отчет о выполненной работе
- •Исследование Защиты от сверхвысокочастотного излучения Методические указания
- •Общие сведения
- •Спектр электромагнитных волн
- •Предельно допустимая напряженность эмп радиочастот в диапазоне 0,06-300 мГц на рабочих местах
- •2. Средства и меры защиты от свч - излучения
- •Типы экранов
- •3. Содержание работы
- •3.1. Описание стенда
- •1. Металлический сварной каркас, 2. Дверцы шкафа; 3. Столешница;
- •4. Координатное устройство; 5. Свч-печь; 6. Датчик;
- •7. Микроамперметр; 8. Пазы.
- •«Защиты от свч – излучений»
- •3.2 Технические характеристики стенда
- •3.3 Требование по технике безопасности
- •4. Порядок выполнения работы
- •5. Отчет о лабораторной работе
- •Анализ опасности поражения человека электрическим током трехфазных сетей напряжением до 1 кВ Методические указания
- •1. Общие сведения
- •1.1 Действие электрического тока на организм человека
- •1.2 Виды поражения электрическим током
- •1.3 Виды трехфазных электрических сетей
- •1.4 Двухфазное прикосновение
- •1.5 Однофазное прикосновение
- •1.6 Трехфазная четырехпроводная сеть с глухозаземленной нейтралью
- •1.7 Трехфазная трехпроводная сеть с изолированной нейтралью
- •2. Описание лабораторного стенда
- •3. Требования безопасности при выполнении работы
- •4. Порядок выполнения измерений
- •5. Отчет о лабораторной работе
- •Оценка эффективности действия защитного заземления Методические указания
- •1. Теоретические основы
- •2. Стендовые измерения показателей эффективности защитного заземления
- •2.1. Оценка эффективности действия защитного заземления в сети с изолированной нейтралью
- •2.2. Оценка эффективности действия защитного заземления в сети с изолированной нейтралью при двойном замыкании на заземленные корпуса электроустановок
- •2.3. Оценки эффективности действия защитного заземления в сети с заземленной нейтралью
- •Результаты работы
- •Описание лабораторного стенда «Защитное заземление и зануление»
- •Оценка эффективности действия зануления Методические указания
- •1.Теоретические основы
- •С напряжением до 1 кВ
- •Нулевого защитного проводника
- •2. Измерение показателей
- •2.1 Определение времени срабатывания автоматов защиты и тока короткого замыкания при замыкании фазного провода на корпус при различном сопротивлении петли "фаза - нуль"
- •2.2. Оценка эффективности действия в сети с повторным заземлением нулевого защитного проводника (ре)
- •2.3. Оценка эффективности повторного заземления при обрыве нулевого защитного проводника
- •3. Результаты работы
- •Практическое занятие
- •Общие положения
- •Нанесение химической обстановки на карту
- •3. Оценка последствий воздействия ахов
- •Измерение радиоактивных излучений Методические указания
- •1. Теоретические основы измерения радиоактивного излучения
- •1.1. Общие положения радиационной безопасности
- •1.2. Краткие сведения об ионизирующем излучении
- •1.3. Основные величины и единицы радиоактивности
- •1.4. Воздействие ионизирующего излучения на человека
- •1.5. Нормы и дозы облучения
- •1.6. Радиационный контроль
- •2. Методика измерений ионизирующего излучения
- •2.1. Назначение, техническая характеристика, устройство и принцип действия дозиметра-радиометра дргб-01-«эко-1»
- •2.2. Подготовка прибора к работе
- •2.3. Методика измерения значения мощности экспозиционной дозы фотонного излучения (мэд)
- •2.4. Методика измерения удельной активности радиоактивных источников в пробах
- •2.5. Методика измерения плотности потока бета-частиц от загрязненных поверхностей
- •3. Выполнение измерений радиоктивного излучения
- •3.1. Контрольные вопросы
- •3.2. Измерения эталонного источника радиоактивного излучения
- •3.3. Измерение радиационного гамма фона в рабочем помещении и на местности
- •Измерение удельной активности радионуклидного источника в продуктах и материалах
- •3.5. Измерение плотности потока бета-частиц от загрязненных поверхностей
- •3.6. Типовая форма отчета о выполненной практической работе
- •Оценка радиационной обстановки после аварии на аэс Методические указания
- •1. Нанесение радиационной обстановки на карту
- •1.1 Нанесение радиационной обстановки методом прогноза
- •1.2 Нанесение радиационной обстановки по данным разведки
- •2. Зоны возможных доз облучения
- •2.1 Определение возможных доз облучения в первые часы и сутки после аварии на яэу
- •2.2 Определение возможных доз облучения при длительном пребывании людей в зонах разм
- •Примеры
- •Количественная оценка затекания аэрозолей в помещения через неплотности извне Методические указания
- •I. Теоретические основы
- •1. Проникание аэрозоля внутрь помещений
- •2. Расчет величины потока воздуха, проникающего в объект
- •3. Расчет доли частиц (аэрозоля), остающихся внутри помещения
- •II. Последовательность выполнения работы
- •1. Получение и обработка исходных данных
- •2. Расчет параметров проникания аэрозоля
- •III. Отчет о выполнении работы
- •1. Исходные данные:
- •2. Расчетные параметры:
- •1. Получение и обработка исходных данных
- •1.1 Определяем параметры помещения, указанного преподавателем
- •1.2 Определяем вероятность “продувания” стенки помещения со стороны отверстий в течение месяца
- •1.3 Определяем скорость ветра с наветренной и подветренной сторон
- •1.5 Определяем интервал времени, в течение которого обеспечивается проникание радионуклидов
- •2. Расчет параметров проникания радионуклидов
- •Форма отчета (пример)
- •1. Исходные данные:
- •2. Полученные результаты:
- •Оценка последствий Аварии на гидротехническом объекте Методические указания
- •Теоретические основы
- •1.1 Аварии на гидротехнических объектах
- •1.1.1 Гидротехнические сооружения
- •1.1.2 Естественные гидродинамические объекты
- •1.1.3 Классификация гидротехнических сооружений
- •1.1.4 Методы наблюдений за деформациями гидросооружений
- •1.1.5 Поражающее действие волны прорыва гидротехнических объектов
- •2. Прогнозирование поражающего действия волны прорыва и зон затопления
- •3. Защита населения от поражающего действия волны прорыва и последующих затоплений
- •3.1 Общие положения по защите населения
- •3.2 Действия населения в условиях угрозы разрушения плотины (гидротехнического сооружения)
- •Исходные данные для расчета параметров волны прорыва
- •Расчетные параметры волны прорыва
- •Методика определения риска Методические указания
- •1. Введение
- •2. Методология риска
- •Методика определения риска
- •Картографирование риска
- •Практические задачи
- •Классификация профессиональной опасности
- •Ориентирование во времени и пространстве Методические указания
- •I. Ориентирование во времени
- •1.1 Солнечные и звездные сутки
- •1.2 Определение времени по Солнцу
- •1.3. Определение времени по Солнцу и компасу
- •1.4. Определение времени по созвездию Большая Медведица
- •6 Усл. Ч. Около 22 сентября
- •1.5. Определение времени по Луне и компасу
- •2.Ориентирование в пространстве
- •2.1. Определение сторон горизонта по Солнцу, Луне и звездам
- •Во вторую половину дня
- •2.2. Определение сторон горизонта по растениям и животным
- •2.3 Определение сторон горизонта по рельефу, почвам, ветру, и снегу
- •2.4. Определение сторон горизонта по постройкам
- •На церковном куполе
- •3. Особенности ориентирования в различных природных условиях
- •3.1. Ориентирование по звуку
- •3.2. Ориентирование по свету
- •3.3. Ориентирование в Арктике и Антарктиде
- •3.4. Ориентирование в тундре и лесотундре
- •3.5 Ориентирование в лесу
- •3.6 Ориентирование в степи и в пустыне
- •3.7 Ориентирование в горах
- •3.8 Ориентирование на реках и озерах
- •3.9 Ориентирование на морях и океанах
1.1.3 Классификация гидротехнических сооружений
Гидротехнические сооружения в зависимости от характера и масштабов последствий их разрушения подразделяются на 4 класса. К первому классу относятся сооружения, авария на которых может вызвать последствия катастрофического характера с гибелью людей и разрушением городских и промышленных зон. Ко второму и третьему классам – сооружения, последствия аварий на которых характеризуются меньшими масштабами разрушений, но значительным материальным ущербом. К четвертому классу относятся сооружения, аварии на которых может вызвать незначительные разрушения и изменения в окружающей среде.
Класс гидротехнических сооружений может определяться несколькими показателями: типом и техническими характеристиками сооружения (табл. 1), его значением (табл. 2) и масштабами народнохозяйственного применения (табл. 3).
Таблица 1
Класс основных гидротехнических сооружений напорного типа в зависимости
от технических показателей сооружения
Сооружения |
Типы грунтов основания |
Высота сооружения, м, при их классе | |||
1 |
2 |
3 |
4 | ||
Плотины из грунтовых материалов |
А |
Более 100 |
От 75 до 100 |
От 25 до 70 |
Менее 25 |
Б |
Более 75 |
От 35 до 100 |
От 15 до 35 |
Менее 15 | |
В |
Более 50 |
От 25 до 50 |
От 15 до 35 |
Менее 15 | |
Плотины бетонные и железобетонные подводные конструкции зданий гидроэлектростанций. Шлюзы |
А |
Более 100 |
От 60 до 100 |
От 25 до 60 |
Менее 25 |
Б |
Более 50 |
От25 до 50 |
От 10 до 25 |
Менее 10 | |
В |
Более 25 |
От 20 до 25 |
От 10 до 20 |
Менее 10 | |
Подпорные стены |
|
Более 40 |
От 25 до 40 |
От 15 до 25 |
Менее15 |
Более 30 |
От 20 до 30 |
От 12 до 20 |
Менее 12 | ||
Более 25 |
От 18 до 25 |
От 10 до 18 |
Менее 10 | ||
Оградительные сооружения (молы, волноломы и дамбы) |
А, Б. В |
Более 25 |
От 25 |
Менее 5 |
- |
Таблица 2
Класс защитных гидротехнических сооружений в зависимости от важности
защищаемых объектов
Назначение сооружения |
Максимальный расчетный напор (м) на водонапорное сооружение при классе защитного сооружения | |||
1 |
2 |
3 |
4 | |
Селитебные. Плотность жилого фонда территории района, м кв, на га |
|
|
|
|
|
|
|
| |
св 2500 |
- |
до 5 |
до 3 |
- |
от 2100 до 2500 |
- |
до 8 |
до 5 |
до 2 |
от 1800 до 2100 |
- |
до 10 |
до 8 |
до 5 |
до 1800 |
- |
- |
до 10 |
до 10 |
Оздоровительно-рекреационного и санитарного значения |
- |
- |
св. 10 |
до 10 |
Продолжение табл. 2 | ||||
Промышленные: промышленные предприятия с объемом производства, млн. руб. (в ценах 1991 г.) |
|
|
|
|
св. 500 |
- |
до 5 |
до 3 |
- |
от 100 до 500 |
- |
до 8 |
до 5 |
до 2 |
до 100 |
- |
до 8 |
до 8 |
до 5 |
Коммунально-складские |
|
|
|
|
Общегородского назначения |
- |
до 8 |
до 5 |
до 2 |
Прочие |
- |
св. 8 |
до 8 |
до 5 |
Памятники культуры и природы |
- |
До3 |
- |
- |
Таблица 3
Класс гидротехнических сооружений в зависимости от масштаба
народнохозяйственного применения
Гидротехнические сооружения |
Класс сооружения |
Гидротехнические сооружения гидравлических, гидроаккумулирующих и тепловых электростанций мощностью млн. кВт: |
|
1,5 и более |
1 |
Менее 1,5 |
2-4 |
Гидротехнические сооружения мелиоративных систем при площади орошения и осушения тыс. га: |
|
св. 300 |
1 |
Св. 100 до 300 |
2 |
Св. 50 до 100 |
3 |
50 и более |
4 |
В системе гидроузла, имеющего несколько гидротехнических сооружений, их класс определяется по основным сооружениям, а класс второстепенных гидротехнических сооружений принимается за единицу ниже класса основных сооружений данного гидроузла, но не выше 3 класса. Временные сооружения, как правило, относят к 4 классу, редко – к 3 классу.
Устойчивость и прочность гидротехнического сооружения проектируется на основе возможных максимальных расчетных значений уровня воды водоема, скорости нагонного ветра, высоты волны и вероятности превышения максимального расхода воды, на безаварийный пропуск которого должно рассчитываться водосборное сооружение. Например, гидроузел 1-го класса должен пропускать максимум вероятного превышения P=0,01% (1/10000) да еще с гарантийной поправкой, а 3-го P=0,5% (1/200). Вместе с тем, в экстремальных условиях гидрологического режима (скоротечный паводок, аварийный сброс вод свыше расположенного по течению реки гидротехнического сооружения и др.) возможны ситуации, когда гидродинамическое воздействие вод превысит расчетные показатели устойчивости и прочности гидротехнического сооружения. Такие отклонения от проектных должны быть не более для сооружений 1-го класса – 1% (1 раз в 100 лет), для 2 и 3 классов – 5% (1 раз в 20 лет), для 4-го класса – 10% (1 раз в 10 лет). Превышение ветровых волн и ветрового нагона над расчетными для сооружений 1 и 2 классов – 2%, 3 и 4 класса – 4%.