
- •Министерство образования и науки Российской Федерации
- •Содержание
- •Лабораторные работы по разделу:
- •I. "Охрана труда на проиводстве"
- •Практические занятия по разделу:
- •II. "безопасность в чрезвычайных ситуациях"
- •Введение Уважаемые студенты!
- •Лабораторная работа
- •Исследование параметров микроклимата
- •Производственного помещения
- •Методические указания
- •1. Основные положения
- •2. Измерение температуры воздуха
- •3. Определение влажности воздуха
- •4. Определение скорости движения воздуха
- •5. Отчет о результатах исследования параметров микроклимата помещений
- •Протокол измерения относительности влажности воздуха
- •Протокол измерения скорости движения воздуха
- •Расчет кратности воздухообмена в помещении Методические указания
- •1. Кратность воздухообмена в помещении
- •2. Условия достижения требуемой кратности воздухообмена путем естественной аэрации
- •3. Примеры расчета воздухообмена
- •Воспользуемся формулой (5):
- •4. Контрольные задания студентам
- •Исследование эффективносТи и качестВа освещения Методические указания
- •Порядок выполнения работы:
- •1. Общие сведения
- •1.1 Светотехнические характеристики освещения
- •1.2 Искусственное освещение
- •1.3 Источники искусственного освещения
- •1.4 Нормирование искусственного освещения
- •1.5 Коэффициент использования осветительной установки
- •2. Лабораторная установка для измерения освещенности
- •2.1 Описание лабораторной установки
- •2.2 Требования безопасности при обращении с лабораторной установкой
- •3. Прибор для измерения освещенности
- •4. Порядок проведения лабораторной работы
- •5. Отчет о работе
- •Допустимая наименьшая освещенность рабочих поверхностей в производственных помещениях (по сНиП 23-05-95)
- •Измерение уровней шума Методические указания
- •1. Общие положения
- •Основные характеристики и единицы измерения шума
- •Классификация шума
- •Действие шума на человека
- •Нормирование шума
- •Описание прибора для выполнения измерений уровня звука
- •Порядок работы на измерителе уровня звука атт-9000
- •Исследование шумовых характеристик
- •Отчет о проведенных измерениях
- •Примерная форма отчета о лабораторной работе (шум в аудитории)
- •Лабораторная работа вибрация и способы защиты от неё Методические указания
- •1. Теоретические основы
- •1.1 Классификация вибрации
- •А) Общая вибрация
- •Б) Локальная вибрация
- •И локальной (б) вибраций
- •1.2 Нормируемые показатели вибрационной нагрузки
- •1.3 Воздействие вибрации на человека
- •2. Способы защиты от вибрации
- •3. Содержание работы
- •3.1. Описание лабораторного стенда
- •1. Подставка под видростенд. 2. Вибростенд. 3. Видростол. 4. Объект виброизоляции.
- •5. Измеритель шума и вибрации вшв-003-м2. 6. Генератор низкочастотных сигналов.
- •7. Ящик для хранения виброзащитных модулей. 8. Виброзащитный модуль.
- •9. Клеммы для подключения.
- •1. Защитный разъемный кожух. 2. Горизонтальная пластина. 3. Магнитопроводящий корпус. 4. Основание. 5. Постоянный магнит. 6. Катушка возбуждения. 7. Вибростол.
- •8. Защитная резиновая прокладка. 9. Листовая пружина
- •4. Требования по техники безопасности
- •5. Описание прибора для измерения параметров вибрации
- •5.1. Измерения вибрации выполняются на приборе измерителе шума и вибрации вшв-003-м2
- •5.2 Подготовка прибора к работе
- •6. Порядок выполнения работы
- •7. Отчет о работе
- •Лабораторная работа Исследование защиты от теплового излучения Методические указания
- •Общие сведения
- •Средства и меры защиты от теплового излучения
- •Описание стенда исследования защиты от теплового излучения
- •4. Общие сведения об радиометре «Аргус-03»
- •5. Порядок выполнения работы на стенде
- •6. Отчет о выполненной работе
- •Исследование Защиты от сверхвысокочастотного излучения Методические указания
- •Общие сведения
- •Спектр электромагнитных волн
- •Предельно допустимая напряженность эмп радиочастот в диапазоне 0,06-300 мГц на рабочих местах
- •2. Средства и меры защиты от свч - излучения
- •Типы экранов
- •3. Содержание работы
- •3.1. Описание стенда
- •1. Металлический сварной каркас, 2. Дверцы шкафа; 3. Столешница;
- •4. Координатное устройство; 5. Свч-печь; 6. Датчик;
- •7. Микроамперметр; 8. Пазы.
- •«Защиты от свч – излучений»
- •3.2 Технические характеристики стенда
- •3.3 Требование по технике безопасности
- •4. Порядок выполнения работы
- •5. Отчет о лабораторной работе
- •Анализ опасности поражения человека электрическим током трехфазных сетей напряжением до 1 кВ Методические указания
- •1. Общие сведения
- •1.1 Действие электрического тока на организм человека
- •1.2 Виды поражения электрическим током
- •1.3 Виды трехфазных электрических сетей
- •1.4 Двухфазное прикосновение
- •1.5 Однофазное прикосновение
- •1.6 Трехфазная четырехпроводная сеть с глухозаземленной нейтралью
- •1.7 Трехфазная трехпроводная сеть с изолированной нейтралью
- •2. Описание лабораторного стенда
- •3. Требования безопасности при выполнении работы
- •4. Порядок выполнения измерений
- •5. Отчет о лабораторной работе
- •Оценка эффективности действия защитного заземления Методические указания
- •1. Теоретические основы
- •2. Стендовые измерения показателей эффективности защитного заземления
- •2.1. Оценка эффективности действия защитного заземления в сети с изолированной нейтралью
- •2.2. Оценка эффективности действия защитного заземления в сети с изолированной нейтралью при двойном замыкании на заземленные корпуса электроустановок
- •2.3. Оценки эффективности действия защитного заземления в сети с заземленной нейтралью
- •Результаты работы
- •Описание лабораторного стенда «Защитное заземление и зануление»
- •Оценка эффективности действия зануления Методические указания
- •1.Теоретические основы
- •С напряжением до 1 кВ
- •Нулевого защитного проводника
- •2. Измерение показателей
- •2.1 Определение времени срабатывания автоматов защиты и тока короткого замыкания при замыкании фазного провода на корпус при различном сопротивлении петли "фаза - нуль"
- •2.2. Оценка эффективности действия в сети с повторным заземлением нулевого защитного проводника (ре)
- •2.3. Оценка эффективности повторного заземления при обрыве нулевого защитного проводника
- •3. Результаты работы
- •Практическое занятие
- •Общие положения
- •Нанесение химической обстановки на карту
- •3. Оценка последствий воздействия ахов
- •Измерение радиоактивных излучений Методические указания
- •1. Теоретические основы измерения радиоактивного излучения
- •1.1. Общие положения радиационной безопасности
- •1.2. Краткие сведения об ионизирующем излучении
- •1.3. Основные величины и единицы радиоактивности
- •1.4. Воздействие ионизирующего излучения на человека
- •1.5. Нормы и дозы облучения
- •1.6. Радиационный контроль
- •2. Методика измерений ионизирующего излучения
- •2.1. Назначение, техническая характеристика, устройство и принцип действия дозиметра-радиометра дргб-01-«эко-1»
- •2.2. Подготовка прибора к работе
- •2.3. Методика измерения значения мощности экспозиционной дозы фотонного излучения (мэд)
- •2.4. Методика измерения удельной активности радиоактивных источников в пробах
- •2.5. Методика измерения плотности потока бета-частиц от загрязненных поверхностей
- •3. Выполнение измерений радиоктивного излучения
- •3.1. Контрольные вопросы
- •3.2. Измерения эталонного источника радиоактивного излучения
- •3.3. Измерение радиационного гамма фона в рабочем помещении и на местности
- •Измерение удельной активности радионуклидного источника в продуктах и материалах
- •3.5. Измерение плотности потока бета-частиц от загрязненных поверхностей
- •3.6. Типовая форма отчета о выполненной практической работе
- •Оценка радиационной обстановки после аварии на аэс Методические указания
- •1. Нанесение радиационной обстановки на карту
- •1.1 Нанесение радиационной обстановки методом прогноза
- •1.2 Нанесение радиационной обстановки по данным разведки
- •2. Зоны возможных доз облучения
- •2.1 Определение возможных доз облучения в первые часы и сутки после аварии на яэу
- •2.2 Определение возможных доз облучения при длительном пребывании людей в зонах разм
- •Примеры
- •Количественная оценка затекания аэрозолей в помещения через неплотности извне Методические указания
- •I. Теоретические основы
- •1. Проникание аэрозоля внутрь помещений
- •2. Расчет величины потока воздуха, проникающего в объект
- •3. Расчет доли частиц (аэрозоля), остающихся внутри помещения
- •II. Последовательность выполнения работы
- •1. Получение и обработка исходных данных
- •2. Расчет параметров проникания аэрозоля
- •III. Отчет о выполнении работы
- •1. Исходные данные:
- •2. Расчетные параметры:
- •1. Получение и обработка исходных данных
- •1.1 Определяем параметры помещения, указанного преподавателем
- •1.2 Определяем вероятность “продувания” стенки помещения со стороны отверстий в течение месяца
- •1.3 Определяем скорость ветра с наветренной и подветренной сторон
- •1.5 Определяем интервал времени, в течение которого обеспечивается проникание радионуклидов
- •2. Расчет параметров проникания радионуклидов
- •Форма отчета (пример)
- •1. Исходные данные:
- •2. Полученные результаты:
- •Оценка последствий Аварии на гидротехническом объекте Методические указания
- •Теоретические основы
- •1.1 Аварии на гидротехнических объектах
- •1.1.1 Гидротехнические сооружения
- •1.1.2 Естественные гидродинамические объекты
- •1.1.3 Классификация гидротехнических сооружений
- •1.1.4 Методы наблюдений за деформациями гидросооружений
- •1.1.5 Поражающее действие волны прорыва гидротехнических объектов
- •2. Прогнозирование поражающего действия волны прорыва и зон затопления
- •3. Защита населения от поражающего действия волны прорыва и последующих затоплений
- •3.1 Общие положения по защите населения
- •3.2 Действия населения в условиях угрозы разрушения плотины (гидротехнического сооружения)
- •Исходные данные для расчета параметров волны прорыва
- •Расчетные параметры волны прорыва
- •Методика определения риска Методические указания
- •1. Введение
- •2. Методология риска
- •Методика определения риска
- •Картографирование риска
- •Практические задачи
- •Классификация профессиональной опасности
- •Ориентирование во времени и пространстве Методические указания
- •I. Ориентирование во времени
- •1.1 Солнечные и звездные сутки
- •1.2 Определение времени по Солнцу
- •1.3. Определение времени по Солнцу и компасу
- •1.4. Определение времени по созвездию Большая Медведица
- •6 Усл. Ч. Около 22 сентября
- •1.5. Определение времени по Луне и компасу
- •2.Ориентирование в пространстве
- •2.1. Определение сторон горизонта по Солнцу, Луне и звездам
- •Во вторую половину дня
- •2.2. Определение сторон горизонта по растениям и животным
- •2.3 Определение сторон горизонта по рельефу, почвам, ветру, и снегу
- •2.4. Определение сторон горизонта по постройкам
- •На церковном куполе
- •3. Особенности ориентирования в различных природных условиях
- •3.1. Ориентирование по звуку
- •3.2. Ориентирование по свету
- •3.3. Ориентирование в Арктике и Антарктиде
- •3.4. Ориентирование в тундре и лесотундре
- •3.5 Ориентирование в лесу
- •3.6 Ориентирование в степи и в пустыне
- •3.7 Ориентирование в горах
- •3.8 Ориентирование на реках и озерах
- •3.9 Ориентирование на морях и океанах
4. Определение скорости движения воздуха
Определение скорости движения воздуха, превышающей 1 м/c, производят с помощью анемометров.
Малые скорости движения воздуха (до 1 м/с) определяют с помощью кататермометров и электроанемометров.
В производственных помещениях допустимая скорость движения воздуха 0,5 - 1 м/с, в жилых – 0,1 - 0,3м/с.
Чашечный анемометр (рис. 6).
Прибор используют при метеорологических наблюдениях в свободной атмосфере для определения движения воздуха от 1 до 50 м/с. В верхней части его имеется четыре полых полушария, закрепленных на крестовине, которая с помощью оси контактирует посредством зубчатой передачи со счетчиком оборотов. Под влиянием давления на полушария движущегося воздуха начинает вращаться ось. Каждый оборот передается на зубчатые колеса, оси которых снабжены стрелками и выведены на поверхность коробки. Большая стрелка движется по циферблату, разделенному на 100 частей. Каждая маленькая стрелка движется по циферблату, разделенному на 10 частей, и показывает величины, в 10 раз большей предшествующей. Каждое деление циферблата первой маленькой стрелки соответствует 100, второй – 1000, третьей – 10000 и т.д.
Для включения или выключения счетчика оборотов сбоку циферблата имеется небольшая петля-рычажок.
Перед наблюдением большую стрелку устанавливают на нуле и записывают показания стрелок. Затем поворачивают прибор циферблатом к исследователю, дают чашечкам вращаться вхолостую 1-2 минуты и включают счетчик оборотов. Наблюдения производят в течение 10 минут, после чего счетчик выключают и записывают показания. Разницу в показаниях прибора делят на количество секунд работы анемометра и умножают на поправку, указанную в прилагаемом к прибору паспорте, или пересчитывают на тарировочной кривой анемометра.
Рис.
6. Чашечный анемометр
Ручной крыльчатый анемометр (рис. 7).
Прибор более чувствителен и пригоден для определения скорости движения воздуха в пределах от 0,3 до 5 м/с. В крыльчатом анемометре вместо полушарий имеются легкие алюминиевые крылья, заключенные в широкое металлическое кольцо.
Перед определением скорости движения воздуха записывают начальное показание счетчика, устанавливают анемометр в воздушном потоке и через 10-15 секунд включают одновременно механизм прибора и секундомер. Определение скорости движения воздуха в течение 1-2 минут. Среднее количество делений, приходящихся на одну секунду, находят делением разности конечного и начального показаний счетчика на время измерения в секундах.
К прибору прилагается два графика, с помощью которых определяют скорость воздушного потока в метрах в секунду.
Ручной крыльчатый анемометр не следует использовать для измерения скорости движения воздуха выше 5 м/с.
Рис. 7. Ручной крыльчатый анемометр
Анемометр цифровой переносной АП1М(рис. 8).
Предназначен для измерения средней скорости направленного воздушного потока и средней скорости ветра. Область применения – метеорология, строительство, пищевая промышленность, а также промсанитария.
Анемометр соответствует исполнению УХЛ категории 4 по ГОСТ 15150, но для работы при температуре воздуха:
- Для первичных измерительных преобразователей: от минус 10 до плюс 50 °С в диапазоне 0,3 - 5 м/с и от минус 30 до плюс 50 °С в диапазоне 1 – 20 м/с.
- Для пульта измерительного цифрового: от минус 10 до плюс 50 °С.
Относительная влажность воздуха 45-80% при температуре (25±10) °С. Время непрерывной работы анемометра при отрицательных температурах до минус 30 °С не более 1 часа.
Питание анемометра осуществляется от аккумуляторной батареи напряжением 5-1В. Потребляемая мощность 0,1 ВА.
Анемометр состоит из пульта измерительного цифрового АП1М, первичного измерительного преобразователя АП1М1 (далее ПИП 1) и блока питания.
Технические характеристики анемометра представлены в таблице 3.
Таблица 3
Технические характеристики анемометра АП1М1
Наименование характеристики |
Един. измер. |
При работе |
ПИП1 | ||
Диапазон измерения средней скорости направленного воздушного потока, средней скорости воздушного потока, средней скорости ветра |
м/с |
0,3-5 |
Чувствительность, не более
Основная погрешность
Время измерения Время индикации |
м/с
м/с
с с |
0,2
±(0,1+0,05V)
5 3 |
Примечание: V – измеряемая средняя скорость в м/с
Устройство и принцип работы. Анемометр цифровой переносной АП1М состоит из следующих составных частей: ПИП1; пульт измерительный цифровой АП1М; блок питания (рис. 8).
Рис. 8. Анемометр цифровой переносной АП1М
ПИП1 имеет крыльчатый ветроприемник, размещенный на полой оси и вращающийся на струне. Принцип работы чувствительного элемента анемометра заключается в преобразовании скорости воздушного потока, вращающегося ветроприемник, в число импульсов и индикации скорости в м/с на пульте АП1М.
На полой оси ветроприемника закреплен обтюратор – диск с прорезями, который во время вращения преобразует световой оптронной пары в импульсы прямоугольной формы с частотой, пропорциональной скорости вращения ветроприемника. Импульсы с фотодиода усиливаются микросхемой и поступают через разъем на пульт измерительный цифровой. Элементы преобразователя – транзисторы, фотодиоды, светодиоды, резисторы и микросхема расположены на унифицированной печатной плате, устанавливаемой в ПИП1.
Несущая конструкция ПИП1 состоит из защитного кольца, предохраняющего ветроприемник от механических повреждений и исключающее влияние боковых составляющих скорости воздушного потока. Ось ветроприемника входит в корпус, в котором размещены обтюратор и плата преобразователя скорости воздушного потока в прямоугольные импульсы.
Соединение ПИП1 с измерительным цифровым пультом осуществляется с помощью трехпроводного кабеля в винилхлоридной трубке через разъем. На защитном кольце имеется шпилька с резьбой для установки держателя.
Порядок работы. Измерительный цифровой пульт и первичный измерительный преобразователь ПИП2, соединить друг с другом через разъем. В случае необходимости установить первичный измерительный преобразователь на штангу, проверить равномерность вращения ветроприемника, включить пульт, через 5 с на табло должно появитьсянекоторое значение скорости воздушного потока. После этого анемометр устанавливают вертикально в измеряемом воздушном потоке. Значение скорости воздушного потока индицируется через 5 с в течение 3 с. Первый отсчет показаний анемометра производитьчерез 30 с. При скорости воздушного потока менее 5 м/с измерения производить с помощью ПИП1. Для этого необходимо отсоединить ПИП2 и присоединить ПИП1, соблюдая меры предосторожности. После этого ПИП1установить в воздушном потоке ветроприемником навстречу потоку (осью крыльчатки вдоль направления потока). Значение скорости воздушного потока инициируется через 5 с в течение 3 с.После проведения необходимого числа измерений выключить напряжение питания, разобрать анемометр и уложить его в укладочную коробку.
Термоанемометр ЭА-2М(рис. 9).
С помощью этого прибора можно определить скорость движения воздуха в пределах от 0,3 до 5 м/с, и его температуру от 10 до 60С. Принцип работы прибора основан на охлаждении движущимся воздухом полупроводникового микротермосопротивления.
Перед измерением прибор устанавливают горизонтально, присоединяют к нему датчик и подключают прибор к сети; он может работать и автономно на батареях.
Для измерения скорости движения воздуха переключатель 5 ставят в положение "А", переключатель 6 – в положение "Контроль", переключатель 2 – в положение "НП" (наружный источник питания) или "ВП" (внутренний источник питания). Вращением ручки 7 устанавливают стрелку гальванометра на максимальное деление шкалы, переключатель 6 становят в положение "Измерение". Производят отсчет показаний гальванометра и по графику определяют скорость движения воздуха.
1 – гальванометр; 2 – переключатель питания; 3 – клеммы для включения прибора в сеть; 5 – переключатель для измерения температуры или скорости воздуха; 6 – переключатель "измерение-контроль"; 7 – ручка регулировки напряжения; 8 – датчик (микротермосопротивление); 10 – защитный футляр датчика
Рис. 9. Термоанемометр ЭА-2М