Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сигналы_1.doc
Скачиваний:
63
Добавлен:
02.05.2015
Размер:
2.67 Mб
Скачать

94

Журкин и.Г., Шавенько н.К.

СИГНАЛЫ

Учебное пособие по курсу

«Автоматизированная обработка аэрокосмической информации»

МОСКВА

2002

Министерство щбразования Российской Федерации

Московский государственный университет геодезии и картографии

Журкин И.Г., Шавенько Н К.

СИГНАЛЫ

Учебное пособие по курсу

«Автоматизированная обработка аэрокосмической информации»

Для студентов 4 и 5 курсов специальностей

«Исследование природных ресурсов» и

«Информационные системы в геодезии»

МОСКВА

2002

Журкин И.Г., Шавенько Н.К.

Сигналы. Учебное пособие—М.: МИИГАиК, 2002 г., с.

Учебное пособие написано в соответствии с утвержденной программой курса «Автоматизированная обработка аэрокосмической информации», рекомендовано кафедрой вычислительной техники и автоматизированной обработки аэрокосмической информации и утверждено к изданию редакционно-издательской комиссией факультета прикладной космонавтики.

Учебное пособие содержит основные теоретические сведения о сигналах, используемых в процессе автоматизированной обработки информациии и описание двух лабораторных работ, которые апробированы в течение ряда лет в Московском государственном университете геодезии и картографии.

Рецензенты:

Гл. 1. Сигналы

§1.1. Основные понятия и классификация

Как отмечалось ранее, сигналы представляют собой физический процесс, несущий информацию или используемый для передачи информации, содержащейся в каком-либо сообщении, то есть сигнал – это форма представления информации на некотором носителе. При этом под носителем понимают некоторые характеристики физических явлений или величины их характеризующие, которые могут меняться как во времени, так и в пространстве.

Если – некоторая характеристика физического явления, информация о котором должна быть передана, то сигнал образуется этой характеристикой как функция

(1.1)

где x, y, z – пространственные координаты;

t – время.

Функция F определяет структуру сигнала. В зависимости от вида F, все сигналы делятся на детерминированные, для которых функция F выражается функцией, значения которой известны при любых значениях аргументов, и случайные (стохастические), для которых функция F есть случайная функция. В свою очередь детерминированные сигналы подразделяются на периодические и непериодические в зависимости от того, является ли детерминированная функция F периодической или непериодической, а случайные сигналы подразделяются на стационарные и нестационарные.

Стационарный случайный сигнал характеризуется не зависящими от времени статическими характеристиками (закон распределения, математическое ожидание, дисперсия и другие), тогда как у нестационарного случайного сигнала они могут изменяться в каждый фиксированный момент времени.

В зависимости от вида используемых аргументов функции F (пространственные или временные) все сигналы делятся на статические и динамические. Не изменяющиеся во времени сигналы называют статическими, а сигналы, изменяющиеся во времени – динамическими, причем преобразование динамического сигнала в статический называется запоминанием, а обратное преобразование – считыванием.

Интервал возможных значений аргументов функции F называют областью определения сигнала, а диапазон возможного изменения значений функции F называют областью значения сигнала .

Обычно мы имеем дело с элементами сигнала, которые называются значениями сигнала. В зависимости от того, какие значения может принимать сигнал, все сигналы делят на следующие классы:

  • дискретный дискретного аргумента;

  • дискретный непрерывного аргумента;

  • непрерывный дискретного аргумента;

  • непрерывный непрерывного аргумента.

Первый и последний класс соответственно часто именуется «дискретным сигналом» и «непрерывным сигналом». В качестве аргумента используют либо пространственные координаты (x,y,z), либо время (t), либо (x,y,z,t) – пространство-время.

Под дискретным сигналом подразумевают любой сигнал, который может принимать только конечное число фиксированных значений.

Дискретность аргумента указывает на то, что значение аргумента определено лишь в конечном числе фиксированных значений из области определения функции F.

Под непрерывным сигналом подразумевают сигнал, значения которого могут принимать любую величину из заданного интервала. Непрерывность аргумента говорит о том, что он может принимать любое значение из области определения.

По методу образования значений все сигналы часто делят на две группы. К первой группе относят сигналы, являющиеся функцией избранной характеристики используемого физического процесса, то есть являющиеся значением самой физической характеристики . Сигналы этой группы в общем случае называют амплитудными сигналами. Они могут быть как непрерывными, так и дискретными. В частности, к сигналам этой группы относят различные аналоговые сигналы и сигналы, получаемые после дискредитации аналогового сигнала по аргументу, по уровню или одновременно по аргументу по уровню.

Ко второй группе относят сигналы, которые являются функцией как избранной характеристики используемого физического явления, так и некоторых структурных параметров сигнала (в общем случае это некоторый функционал).

При использовании сигналов для передачи информации необходимо чтобы они обладали двумя видами параметров: информационными и селекции.

Информационными параметрами сигнала называют те его физические параметры, в которых содержится передаваемое сообщение, а параметры селекции служат для возможности выделения данного сигнала из множества подобных.

Все сигналы, относящиеся к первой группе, всегда имеют информативный параметр, а сигналы второй группы делятся на сигналы с информационным параметром и на сигналы без информационного параметра.

К сигналам второй группы с информационным параметром относят сигналы, в которых информация содержится в физических характеристиках элемента сигнала. К этой группе, в частности, относят различные импульсные сигналы (амплитудно-импульсные, частотно-импульсные, широтно-импульсные) и частотные сигналы, у которых для передачи сообщения используют изменение частоты, амплитуды или фазы гармонических колебаний.

В сигналах второй группы без информационного параметра информация содержится в комбинации или во взаимном расположении отдельных элементов или значений характеристики физического явления. Чаще всего они строятся на основе каких-либо стандартных импульсов. При этом метод образования этих сигналов из импульсов называется кодированием, причем различают последовательное и параллельное кодирование. При последовательном кодировании значение сигнала состоит из последовательности импульсов (или иных символов), а при параллельном – значение сигнала образуется как совокупность символов, полученных по нескольким каналам. В первом случае для каждого символа выделяется промежуток времени, а во втором – канал связи.

Классификация сигналов представлена на рис.1.1

На практике чаще всего приходится иметь дело с одномерными сигналами, которые представляются в виде функции (F) одного аргумента x, y, z или t. И все приведенные выше определения и классификации чаще всего подразумевают именно это.

Однако, наряду с одномерными сигналами, которые можно представить в виде функции одшого аргумента, при автоматической обработке информации (пространственные данные и изображения) приходится иметь дело и с многомерными сигналами, которые могут быть представлены в виде функции нескольких переменных. Так сигналы, соответствующие изображению аэрофотоснимка можно представить в виде функции двух аргументов, в кпчестве которых используются координаты точек снимка x и y. Многомерные сигналы часто называют скалярными полями.

Кроме того при автоматизированой обработке изображений используются сигналы, значение которых могут быть представлены в виде n-мерных векторов. Например, для цветного фотоизображения значение цветовой характеристики каждой точки представляются в виде трехмерного вектора, в качестве компонента которого используется относительные величины основных цветов (при использовании трёхкомпонентных систем представления цвета). Такие сигналы называют многопараметрическими или векторными полями.

Многомерные и многопараметрические сигналы могут быть классифицированы и описаны с помощью тех же понятий, как это было сделано для одномерных сигналов.