
- •Журкин и.Г., Шавенько н.К.
- •Гл. 1. Сигналы
- •§1.1. Основные понятия и классификация
- •§1.2. Модуляция сигналов
- •§1.3. Непрерывные и импульсные модуляции
- •§1.4. Цифровая модуляция
- •§1.5. Дискретизация по уровню (квантование по уровню)
- •§1.6. Дискредитация (квантование) по времени или по текущей координате
- •§1.7. Шумы. Общие понятия
- •Гл. 2. Аналитическое моделирование сигналов
- •§2.1. Общие подходы к моделированию сигналов.
- •§2.2. Математические модели представления детерминированных одномерных сигналов
- •§2.3. Частотная форма представления детерминированных сигналов
- •§2.4. Математическое описание одномерных сигналов
- •§2.5. Распределение энергии в спектре периодического сигнала
- •§2.6. Преобразование Фурье.
- •§2.7. Основные свойства преобразования Фурье
- •§2.8. Распределение энергии в спектре непериодического сигнала
- •§2.9. Корреляционные функции детерминированных сигналов
- •§2.10. Частотное представление импульсных сигналов
- •§2.11. Влияние импульсного модулятора на спектр входного сигнала
- •§2.12. Случайные сигналы
- •§2.13. Стационарные случайные функции
- •§2.14. Определение характеристик случайных функций по экспериментальным данным
- •§2.15. Эргодическое свойство стационарных случайных функций
- •§2.16. Спектральное представление случайных сигналов
- •§2.17. Частотное представление стационарных случайных сигналов
- •§2.18. Случайные поля при исследовании природных образований
- •§2.19. Математическое описание непрерывных двумерных сигналов на примере изображений
- •§2.20. Дискретное преобразование Фурье
- •Лабораторные работы. Лабораторная работа № 1. Модуляция сообщений.
- •Преобразование сигналов из временной в частотную область. Описание лабораторной работы выполнено с использованием программного
- •Литература
- •Оглавление
- •Глава 1. Сигналы. 4
- •Глава 2. Аналитическое моделирование сигналов. 23
Журкин и.Г., Шавенько н.К.
СИГНАЛЫ
Учебное пособие по курсу
«Автоматизированная обработка аэрокосмической информации»
МОСКВА
2002
Министерство щбразования Российской Федерации
Московский государственный университет геодезии и картографии
Журкин И.Г., Шавенько Н К.
СИГНАЛЫ
Учебное пособие по курсу
«Автоматизированная обработка аэрокосмической информации»
Для студентов 4 и 5 курсов специальностей
«Исследование природных ресурсов» и
«Информационные системы в геодезии»
МОСКВА
2002
Журкин И.Г., Шавенько Н.К.
Сигналы. Учебное пособие—М.: МИИГАиК, 2002 г., с.
Учебное пособие написано в соответствии с утвержденной программой курса «Автоматизированная обработка аэрокосмической информации», рекомендовано кафедрой вычислительной техники и автоматизированной обработки аэрокосмической информации и утверждено к изданию редакционно-издательской комиссией факультета прикладной космонавтики.
Учебное пособие содержит основные теоретические сведения о сигналах, используемых в процессе автоматизированной обработки информациии и описание двух лабораторных работ, которые апробированы в течение ряда лет в Московском государственном университете геодезии и картографии.
Рецензенты:
Гл. 1. Сигналы
§1.1. Основные понятия и классификация
Как отмечалось ранее, сигналы представляют собой физический процесс, несущий информацию или используемый для передачи информации, содержащейся в каком-либо сообщении, то есть сигнал – это форма представления информации на некотором носителе. При этом под носителем понимают некоторые характеристики физических явлений или величины их характеризующие, которые могут меняться как во времени, так и в пространстве.
Если – некоторая характеристика физического явления, информация о котором должна быть передана, то сигнал образуется этой характеристикой как функция
(1.1)
где
x,
y,
z
– пространственные
координаты;
t – время.
Функция F определяет структуру сигнала. В зависимости от вида F, все сигналы делятся на детерминированные, для которых функция F выражается функцией, значения которой известны при любых значениях аргументов, и случайные (стохастические), для которых функция F есть случайная функция. В свою очередь детерминированные сигналы подразделяются на периодические и непериодические в зависимости от того, является ли детерминированная функция F периодической или непериодической, а случайные сигналы подразделяются на стационарные и нестационарные.
Стационарный случайный сигнал характеризуется не зависящими от времени статическими характеристиками (закон распределения, математическое ожидание, дисперсия и другие), тогда как у нестационарного случайного сигнала они могут изменяться в каждый фиксированный момент времени.
В зависимости от вида используемых аргументов функции F (пространственные или временные) все сигналы делятся на статические и динамические. Не изменяющиеся во времени сигналы называют статическими, а сигналы, изменяющиеся во времени – динамическими, причем преобразование динамического сигнала в статический называется запоминанием, а обратное преобразование – считыванием.
Интервал возможных значений аргументов функции F называют областью определения сигнала, а диапазон возможного изменения значений функции F называют областью значения сигнала .
Обычно мы имеем дело с элементами сигнала, которые называются значениями сигнала. В зависимости от того, какие значения может принимать сигнал, все сигналы делят на следующие классы:
дискретный дискретного аргумента;
дискретный непрерывного аргумента;
непрерывный дискретного аргумента;
непрерывный непрерывного аргумента.
Первый и последний класс соответственно часто именуется «дискретным сигналом» и «непрерывным сигналом». В качестве аргумента используют либо пространственные координаты (x,y,z), либо время (t), либо (x,y,z,t) – пространство-время.
Под дискретным сигналом подразумевают любой сигнал, который может принимать только конечное число фиксированных значений.
Дискретность аргумента указывает на то, что значение аргумента определено лишь в конечном числе фиксированных значений из области определения функции F.
Под непрерывным сигналом подразумевают сигнал, значения которого могут принимать любую величину из заданного интервала. Непрерывность аргумента говорит о том, что он может принимать любое значение из области определения.
По методу образования значений все сигналы часто делят на две группы. К первой группе относят сигналы, являющиеся функцией избранной характеристики используемого физического процесса, то есть являющиеся значением самой физической характеристики . Сигналы этой группы в общем случае называют амплитудными сигналами. Они могут быть как непрерывными, так и дискретными. В частности, к сигналам этой группы относят различные аналоговые сигналы и сигналы, получаемые после дискредитации аналогового сигнала по аргументу, по уровню или одновременно по аргументу по уровню.
Ко второй группе относят сигналы, которые являются функцией как избранной характеристики используемого физического явления, так и некоторых структурных параметров сигнала (в общем случае это некоторый функционал).
При использовании сигналов для передачи информации необходимо чтобы они обладали двумя видами параметров: информационными и селекции.
Информационными параметрами сигнала называют те его физические параметры, в которых содержится передаваемое сообщение, а параметры селекции служат для возможности выделения данного сигнала из множества подобных.
Все сигналы, относящиеся к первой группе, всегда имеют информативный параметр, а сигналы второй группы делятся на сигналы с информационным параметром и на сигналы без информационного параметра.
К сигналам второй группы с информационным параметром относят сигналы, в которых информация содержится в физических характеристиках элемента сигнала. К этой группе, в частности, относят различные импульсные сигналы (амплитудно-импульсные, частотно-импульсные, широтно-импульсные) и частотные сигналы, у которых для передачи сообщения используют изменение частоты, амплитуды или фазы гармонических колебаний.
В сигналах второй группы без информационного параметра информация содержится в комбинации или во взаимном расположении отдельных элементов или значений характеристики физического явления. Чаще всего они строятся на основе каких-либо стандартных импульсов. При этом метод образования этих сигналов из импульсов называется кодированием, причем различают последовательное и параллельное кодирование. При последовательном кодировании значение сигнала состоит из последовательности импульсов (или иных символов), а при параллельном – значение сигнала образуется как совокупность символов, полученных по нескольким каналам. В первом случае для каждого символа выделяется промежуток времени, а во втором – канал связи.
Классификация сигналов представлена на рис.1.1
На практике чаще всего приходится иметь дело с одномерными сигналами, которые представляются в виде функции (F) одного аргумента x, y, z или t. И все приведенные выше определения и классификации чаще всего подразумевают именно это.
Однако, наряду с одномерными сигналами, которые можно представить в виде функции одшого аргумента, при автоматической обработке информации (пространственные данные и изображения) приходится иметь дело и с многомерными сигналами, которые могут быть представлены в виде функции нескольких переменных. Так сигналы, соответствующие изображению аэрофотоснимка можно представить в виде функции двух аргументов, в кпчестве которых используются координаты точек снимка x и y. Многомерные сигналы часто называют скалярными полями.
Кроме того при автоматизированой обработке изображений используются сигналы, значение которых могут быть представлены в виде n-мерных векторов. Например, для цветного фотоизображения значение цветовой характеристики каждой точки представляются в виде трехмерного вектора, в качестве компонента которого используется относительные величины основных цветов (при использовании трёхкомпонентных систем представления цвета). Такие сигналы называют многопараметрическими или векторными полями.
Многомерные и многопараметрические сигналы могут быть классифицированы и описаны с помощью тех же понятий, как это было сделано для одномерных сигналов.