Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
emp.docx
Скачиваний:
104
Добавлен:
20.04.2015
Размер:
973.9 Кб
Скачать

Вопрос 10. Учёт сторонних источников в Уравнениях Максвелла.

В правой части 1-ого уравнения Максвелла в дифференциальной форме входит векторная величина объемной плотности электрического тока, которая возбуждается в среде под действием внешнего электрического поля.

Этот ток возникает в результате воздействия электрического поля на проводящую среду. В общем случае правую часть1-ого уравнения Максвелла дополняют еще одной векторной величиной — вектором объемной плотности стороннего электрического тока, , который рассматриваютпервопричиной возникновения электрического поля в рассматриваемой части пространства.

Часто, вместо стороннего электрического тока, вводят стороннее электрическое поле (вектор напряженности стороннего электрического поля Ест). возбуждается сторонними электрическими токами протекающими в не рассматриваемой части пространства.

В случае постоянных процессов в качестве Ест понимается напряженность электрического поля сторонних Э.Д.С, которые имеют не электрическую природу (химическую, диффузионную и т.д.).

Введение исущественно упрощает решение электродинамических задач т. к. исключает детальный анализ в некоторой части пространства. Аналогично понятию сторонние электрические токи вводят понятие сторонние электрические заряды:

            1 уравнение Максвелла   (1)

    3 уравнение Максвелла   (2)

В случае переменных электромагнитных процессов сторонние токи и сторонние заряды связаны уравнением непрерывности:

.

Вопрос 11. Полная система граничных условий

Таким образом, на поверхности раздела любых двух изотроп­ных сред должны выполняться следующие граничные условия:

Уравнения (1.1.01) составляют полную систему граничных ус­ловий. Они справедливы для любых электромагнитных про­цессов, рассматриваемых в макроскопической электродинамике. Не включенные в систему (1.101) граничные условия для сос­тавляющих Dτ, Еп, Вτ и Нп являются следствиями соотношений (1.101) и уравнений состояния (1.53). Граничные условия (1.101) можно записать также в векторной форме:

При изучении переменных электромагнитных полей вблизи поверхности металлических тел часто предполагают, что рассмат­риваемое тело является идеально проводящим. При этом гранич­ные условия упрощаются, так как в среде с σ = ∞ поле отсутствует. Действительно, плотность тока проводимости j должна быть огра­ниченной величиной. Поэтому из закона Ома в дифференциаль­ной форме (1.9) следует, что напряженность электрического поля внутри идеального проводника должна быть равна нулю. Полагая во втором уравнении Максвелла Е = 0, получаем dB/dt= 0. Так как поле считается переменным, то последнее равенство выполняется только при В = 0.

Пусть идеально проводящей является вторая среда. Тогда D2= E2= В2= Н2= 0 и условия (1.101) принимают вид

Вопрос 12. Баланс Энергии эмп. Теорема Умова-Пойнтинга в интег-ой и диф-ой формах.

Как и любая форма материи, электромагнитное поле обладает энергией, которая может распространяться в пространстве и преобразоваться в другие виды энергии.

  Сформулируем уравнение баланса электромагнитного поля применительно к некоторому объему V, ограниченному поверхностью S. Пусть, в этом объеме, за счет сторонних источников, выделяется электромагнитная энергия. Из общефизических соображений, очевидно, что мощность сторонних источников будет расходоваться на потери, на изменение энергии и частично будет рассеиваться на поверхности S, уходя во внешнее пространство.

  Будем полагать, что среда в объеме V однородная и изотропная. Мощность в объеме V выделяется за счет протекания сторонних токов, в дальнейшем будем пользоваться известными материальными уравнениями:

                       (1)

; ;  (2)

Материальные уравнения в форме (2) не позволяют учесть потери связанные с явлением поляризации и намагничивания вещества. Уравнение баланса в форме (1) дает качественное представление о балансе энергии. Для получения уравнения необходимо перейти к векторам электромагнитного поля, т.е. воспользоваться уравнениями Максвелла. Для получения количественного соотношения обратимся к уравнениям Максвелла.

Можно записать.

(8)

(9)

Для того, чтобы электромагнитное поле было тормозящим необходимо чтобы скалярное произведение удовлетворяло следующему условию: .

При этом левая часть (9) становится положительной величиной.

Рассмотрим второе слагаемое правой части. Будем полагать, что поверхность S окружающая V является идеально проводящей

,      

и проводимость среды в объеме равна нулю.

          , ,,

          По  условию поверхность Sявляется идеально проводящей.

          При этом уравнение баланса имеет следующий вид:

(12)

т.е. в рассматриваемом случае мощность сторонних источников может расходоваться на изменение энергии внутри объема. В правой части выражения (12) мы получили скорость изменения энергии .

(13)

в V=>

(14)

В этом случае мощность сторонних токов рассеиваясь на поверхности S уходит во внешнее пространство. Таким образом, мы получили, что уравнение (9) полностью идентично формуле (1).

Соотношение (9) было сформулировано Поинтингом (уравнение баланса энергии электромагнитного поля – теорема Пойнтинга).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]