Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задача 3.doc
Скачиваний:
849
Добавлен:
01.04.2015
Размер:
3.24 Mб
Скачать

§ 12. Сложение дисперсий

Теорема. Если совокупность состоит из нескольких групп, то общая дисперсия равна сумме внутригрупповой и межгрупповой дисперсий:

Dобщ =Dвнгр + Dмежгр.

Доказательство. Для упрощения доказательства предположим, что вся совокупность значений количественного признака X разбита на две следующие группы:

Группа……………………

первая

вторая

Значение признака………..

x1 x2

x1 x2

Частота…………………….

m1 m2

n1 n2

Объем группы…………….

N1= m1+ m2

N2= n1+ n2

Групповая средняя……….

Групповая дисперсия…….

Объем своей совокупности

n=N1+N2

Далее для удобства записи вместо знака суммы пишется знак.

Например, .

Следует также иметь в виду, что если под знаком суммы стоит постоянная величина, то ее целесообразно выносить за знак суммы.

Например, .

Найдем общую дисперсию:

Dобщ=. (*)

Преобразуем первое слагаемое числителя, вычтя и прибавив :

.

Так как

(равенство следует из соотношения ) и в силу § 7

,

тo первое слагаемое принимает вид

. (**)

Аналогично можно представить второе слагаемое числителя (*) (вычтя и прибавив):

. (***)

Подставим (**) и (***) в (*):

.

Итак,

Dобщ =Dвнгр + Dмежгр.

Пример, иллюстрирующий доказанную теорему, приведен в предыдущем параграфе.

Замечание. Теорема имеет не только теоретическое, но и важное практическое значение. Например, если в результате наблюдений получены несколько групп значений признака, то для вычисления общей дисперсии можно группы в единую совокупность не объединять. С другой стороны, если совокупность имеет большой объем, то целесообразно разбить ее на несколько групп. В том и другом случаях непосредственное вычисление общей дисперсии заменяется вычислением дисперсий отдельных групп, что облегчает расчеты.

§ 13. Оценка генеральной дисперсий по исправленной выборочной

Пусть из генеральной совокупности в результате n независимых наблюдений над количественным признаком X извлечена повторная выборка объема n:

значения признака………

x1

x2

xk

частоты…………………...

n1

n2

nk

При этом n1 + n2 + ... + nk = п.

Требуется по данным выборки оценить (приближенно найти) неизвестную генеральную дисперсию Dг. Если в качестве оценки генеральной дисперсии принять выборочную дисперсию, то эта оценка будет приводить к систематическим ошибкам, давая заниженное значение генеральной дисперсии. Объясняется это тем, что, как можно доказать, выборочная дисперсия является смещенной оценкой Dг, другими словами, математическое ожидание выборочной дисперсии не равно оцениваемой генеральной дисперсии, а равно

.

Легко «исправить» выборочную дисперсию так, чтобы ее математическое ожидание было равно генеральной дисперсии. Достаточно для этого умножить Dв на дробь n/(n-1). Сделав это, получим исправленную дисперсию, которую обычно обозначают через s2:

.

Исправленная дисперсия является, конечно, несмещенной оценкой генеральной дисперсии. Действительно,

.

Итак, в качестве оценки генеральной дисперсии принимают исправленную дисперсию

.

Для оценки же среднего квадратического отклонения генеральной совокупности используют «исправленное» среднее квадратическое отклонение, которое равно квадратному корню из исправленной дисперсии:

.

Подчеркнем, что s не является несмещенной оценкой; чтобы отразить этот факт, мы написали и будем писать далее так: «исправленное» среднее квадратическое отклонение.

Замечание. Сравнивая формулы

и .

видим, что они отличаются лишь знаменателями. Очевидно, при достаточно больших значениях n объема выборки выборочная и исправленная дисперсии различаются мало. На практике пользуются исправленной дисперсией, если примерно n < 30.