Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Английский язык для горных инженеров

.pdf
Скачиваний:
1999
Добавлен:
13.02.2015
Размер:
11.78 Mб
Скачать

Advances in the development of colour films are likely to increase the importance of this method in mineral exploration. For example, copper districts may show large reddish areas near the ore bodies.

Research into the applications of colour photography and into the use of airborne infra-red sensors may help in the problem of rock identification, and thus also in mineral exploration from air. Studies of the spectral zone suggest that rocks and minerals may have characteristic absorption, reflection, and emission spectra in this range.

Besides, it was found that the combination of survey methods for example, photogeology and airborne geophysics, the integration of photogeology with geochemical prospecting provided information that exceeded the sum of data obtainable from air photography or geophysics when used separately. Some types of deposits were discovered by using combined data from air photographs and aeromagnetic survey.

Recent developments deal with the application of more complicated remote sensing systems to mineral exploration. Certain types of mineral deposits show strong and unique fluorescent properties which may be used in mineral exploration. The using of maser devices to excite spectral response in specific materials, e.g. fluorescent mineral, has been suggested.

Radar,

having the capacity

to

penetrate

vegetation and

to record the metallic content

of

surface and

to

some extent,

of subsurface materials, may

also

prove useful

in combina-

tion with

other forms of airborne

mineral

survey.

Scientists also suggest that thermal mapping from air should be used in mineral exploration. Changes in infra-red radiation, related to surface temperature characteristics and the emissivity of surfaces, may be translated into a strip thermal map. Long-range detection of hot spring and gaseous emanations will be among the practical applications of this system.

Much has been done by the scientists throughout the world. In the field of geology the X-ray has been very successfully incorporated into geology and is used to probe the atomic structures of minerals. Fluorescent methods enable the geochemists to analyse large numbers of samples for major elements and for tracing elements and to determine the way in which the chemical elements are incorporated in igneous rocks and how the replacements of one element by another occur within the mineral groups.

Though X-rays are being used in the field geology, there

290

is still a wider

scope

for the investigations. Special emphasis

is placed on microfossils.

Microfossils,

such

as foraminifera, ostracoda and others

are exceedingly small and necessitate detailed examination under the microscope. Micropalaeontology has recently become a very specialized science with strong links with both zoology and botany. The value of these tiny fossils is that they are not easily destructible, and that they occur in large numbers and are thus a very good basis for rock zonation. Both for their own account as biological organisms and for their geological application these small fossils will con-

tinue

to attract the

scientists'

attention.

 

 

Looking further

ahead,

there

is the

geological

side of

space

exploration.

A new

field

of

investigations is

opening

for geology. The exploration of the Moon, Mars, Venus and other planets has already begun. Geological interpretation of the Moon is now well advanced and it has become known that its surface and that of Mars are rocky.

The use of automatic and piloted Earth satellites — spaceships and stations — has allowed global exploration of all parts of our planet, both continental and oceanic. They can observe large geographical structures which could not have

been sufficiently

viewed

from the air. Ground surveying

continues

to check

the data obtained, including the drilling

of core

holes and

seismic

survey.

Geologists are of the opinion that the material which has already been obtained from spaceships or satellites with the help of video equipment is quite interesting. They think that in future TV systems will help in natural resources exploration.

8. TECHNOLOGICAL TRENDS IN MINING

 

 

 

In step

with industrial and technical

advances

the

tempo

of mining activity has accelerated rapidly.

 

 

Shallow mines containing high-grade ore deposits either

have

been

or are being rapidly mined

out and

their

place

can

only

be taken by deposits lying at

greater

depths.-

Scientists consider that the nature and characteristics of

individual

deposits will not differ greatly, except in the

matter of

average depth from those of

today.

 

 

Though more and more useful minerals in the world are mined by open-pit mining, the importance of underground mining is still great because the average grade of ore mined underground is higher than that of open-pit ore. It is possible

291

to say that about half the world's mineral production comes

from underground mines. By far the major

part

of

gold

is

mined

underground,

as is most of the lead

and zinc.

 

 

In

mining deeper

and

lower grade deposits

there is

a

tendency to use in situ mining which seems to be a

promising

process

and

the

one

on which research is concentrated

on

the

international

scene.

 

 

 

 

 

 

 

In situ mining involves the flow of solution through rock

masses,

the

leaching

of minerals in place and the recovery

of

metals from

the

metal-bearing

liquors.

 

 

 

 

 

It should

be

noted that

in situ

mining

is in

its

initial

stage of development. It has previously been limited to the extraction of copper from low-grade ores. Processes will soon

be developed for the in situ extraction and recovery of

metals

such as copper, lead, zinc, nickel, manganese, uranium,

silver,

gold

and

others.

 

As

for

coal, the principles of in situ extraction

involve

burning coal directly in place. Underground gasification, the production of gas and liquid fuel from coal is the mpst promising process in tomorrow's technology.

One of the main advantages of the in situ mining is that it

can be used to

recover minerals economically from materials

that could not

be extracted by

conventional

mining

methods.

Besides, the

in situ mining

can often be

used in

conjunc-

tion with a conventional mining.

Another problem of mining is further mechanization and automation of mining processes. Thus, in underground mining great attention is paid to designing efficient winning complexes consisting of self-moving powered supports incorporated

with

shearer

or

plough operating in productive faces.

It is of interest to note that computers have become val-

uable

tools in many mining applications. They are espe-

cially

useful

in

mine design, ventilation, simulation, moni-

toring and in other fields. The computer programmes give information on coal seam thickness, and the nature of dis-

turbances.

Computers can help determine production levels

of different

extraction strategies. Microcomputers also find

more wider

use in mining and exploration projects.

For example, ventilation planning has been assisted by the introduction of computers and analog devices. Mathematical models have been developed for use with digital computers enabling heat flow to be calculated and leading to the prediction of environmental conditions in ventilation districts and hence facilitating the estimation of ventilation requirements. It is obvious that the development of effective ven-

292

tilation methods is a very important problem in mining. It is known that in designing mine layouts, the quantity and quality of the air to be circulated to the working places have always been of prime importance. Workings have become deeper and rock temperatures have accordingly become prog-

ressively higher. It has become necessary to find

means of

transferring the cooling effect over

considerable

distances.

Special attention is paid to mine

safety as part

of mech-

anization and automation of mining processes. Automatic

instruments and systems along with safety devices

effec-

tively

monitor

the working environment and ensure

human

safety

in all

mining

operations.

 

 

A highly promising development in manless, fully auto-

mated

mining is a technology based on a set of remote-con-

trolled machines. These

telecontrol led manipulator

machines

would

be used primarily

for the assembly, control

and

repair

of mining machinery and heading machines. The development of tele-controlled manipulators facilitates mining at great

depths (up to 3,000 meters) beneath

the seabed,

and

in other

difficult

and unusual seam

conditions.

Thus,

the

presence

of men at the face would be necessary

to carry

out

repairs

and maintenance

only.

 

 

 

 

 

 

Another example is the idea of tele-operated

winning

machines,

robots

which can

carry

out

manual

operations

when instructed by a remote human operator through close-

circuit

television.

 

 

 

Coal

transport is another area for underground automation.

That

is

why scientists

and

engineers

are working on design-

ing

equipment

which

will

monitor

machines and conveyers

using cables, radio and television

screens.

The

rising

role of coal is connected with ecological prob-

lems. The rational, effective and ecologically harmless utilization of coal is a key problem in coal-based power engineering. First of all, it is a comprehensive utilization of the total rock mass including preparation 'waste. Then follow the improvement of power-generating coal quality and the reduction

of fuel losses in the process of its

utilization. Finally, it is

the

development

of close-cycle wasteless coal

technologies

and

its

processing into

synthetic

fuels.

 

 

The mining industry today is to continue to satisfy -the

world's

rapidly

growing

demand

for minerals

and metals.

To

meet

this challenge

the most

important requirement is

the efficient use of modern machinery and human resources based on scientific and technological progress.

293

С О Д Е Р Ж А Н И Е

 

 

 

 

 

 

 

 

Предисловие

 

 

 

 

 

 

 

 

 

3

Урок 1. Soviet Economic Development

 

 

 

 

 

5

Урок 2. Mining Education in the USSR

 

 

 

 

 

23

Урок 3. Mining Education Abroad

 

 

 

 

 

 

47

Урок 4. Soviet Science of Mining

 

 

 

 

 

 

67

Урок

5. Rocks of the Earth's Crust

and

Useful

Minerals . . .

90

Урок

6. Rocks of

the

Earth's Crust

and

Useful

Minerals

 

 

 

 

 

(continued)

 

 

 

 

 

 

 

113

Урок 7. Sources of Energy Available Today

 

 

 

 

135

Урок 8. Prospecting and Exploration

 

 

 

 

 

154

Урок 9. Mining

 

 

 

 

 

 

 

 

175

Урок 10. Open-cast Mining

 

 

 

 

 

 

198

Краткий грамматический справочник

 

 

 

 

 

 

§

1.

Грамматический строй английского языка

 

 

220

§

2.

Структура

повествовательного предложения

 

 

220

§

3.

Структура вопросительных предложений. Типы вопросов

221

§

4.

Общий

вопрос

 

 

 

 

 

 

 

221

§

5.

Специальный вопрос

 

 

 

 

 

 

221

§

6.

Альтернативный вопрос

 

 

 

 

 

 

222

§

7.

Отрицательные

предложения

 

 

 

 

 

222

§

8.

Безличные и неопределенно-личные предложения

. .

223

§

9.

Конструкция there is/there are

 

 

 

 

 

223

И м я

с у щ е с т в и т е л ь н о е

( T h e

 

N o u n ) . . . .

224

§

10.

Образование множественного числа существительных

.

224

§

11.

Особые

случаи

образования

множественного числа имен

 

 

 

существительных

 

 

 

 

 

 

224

§

12.

Падежные

отношения имен существительных

. . . .

225

§

13.

Общий

падеж (The Common

Case)

 

 

. . . .

525

§

14.

Притяжательный падеж (The Possessive Case)

226

§

15.

Признаки

существительного

 

 

 

 

 

 

226

§

16.

Группа

существительного

 

 

 

 

 

 

227

И м я

п р и л а г а т е л ь н о е

( T h e

A d j e c t i v e )

227

§

17.

Общие

сведения

 

 

 

 

 

 

227

§

18.

Образование степеней сравнения

прилагательных

. .

228

§

19.

Особые

случаи

образования

степеней

сравнения

прила-

228

 

 

гательных

 

 

 

 

 

 

 

 

§ 20.

Усиление степеней сравнения

прилагательных

. . . .

229

§ 21.

Другие

способы

выражения

сравнения

 

 

 

229

294

И м я

ч и с л и т е л ь н о е

( T h e

N u m e r a l )

 

. . .

230

§

22.

Образование количественных и порядковых числитель-

230

 

 

ных

 

 

 

 

 

 

 

 

 

 

 

 

 

 

§ 23.

Чтение составных числительных и многозначных чисел

230

§ 24.

Чтение

дробных

числительных

 

 

 

 

 

231

§ 25. Чтение процентов и дат

 

 

 

 

 

 

 

 

231

М е с т о и м е н и е

( T h e

P r o n o u n )

 

 

 

 

232

§ 26.

Личные

и

притяжательные

местоимения

 

 

 

232

§ 27.

Возвратно-усилительные

местоимения

 

 

 

 

232

§

28.

Указательные

местоимения

 

 

 

 

 

 

 

233

§

29.

Вопросительные

и

относительные местоимения

 

. . .

233

§ 30. Неопределенные местоимения some, any

 

 

 

233

§ 31.

втрицательные местоимения по и попе

some,

any,

234

§

32.

Местоимения,

производные

от

местоимений

 

§

33.

no,

every

 

 

местоимения

many,

much,

little,

few

234

Количественные

235

Г л а г о л

(Т h е

V e r b )

 

 

 

 

 

 

 

 

235

§

34.

вбщие сведения,

всновные

формы глагола

.

. . . ,

235

§

35.

Повелительное

наклонение

 

 

 

 

 

 

 

236

§ 36.

Вспомогательные

глаголы

 

 

 

 

 

 

.

237

§

37.

Глагол to be (was, were,

been)

 

 

 

 

238

§

38.

Глагол

to

have

(had)

 

 

 

 

 

 

 

 

240

§

39.

Времена

группы

Indefinite

(Simple)

 

 

 

 

241

§

40.

Простое

настоящее

время

(The

Present Indefinite

(Sim-

241

 

 

ple)

Tense)

 

 

 

 

 

 

 

 

 

 

 

 

§

41.

Простое

прошедшее

время (The

Past

Indefinite

(Simple)

242

 

 

Tense)

 

 

 

 

 

 

 

 

 

 

 

 

 

§

42.

Простое

будущее

время

(The Future

Indefinite

(Simple)

243

 

 

Tense)

 

 

 

 

 

 

 

 

 

 

 

 

 

§

43.

Простое будущее время в прошедшем (The Future. Indefi-

244

 

 

nite in the Past Tense)

 

 

 

 

 

 

 

 

§

44.

Модальные глаголы и их эквиваленты

 

 

 

245

§

45.

Глагол

сап

 

 

 

 

 

 

 

 

 

 

 

246

§

46.

Глаголы

must,

should (would),

ought

to

 

 

 

246

§

47.

Глагол

may

 

 

 

 

 

 

 

 

 

 

 

247

§ 48.

Употребление модальных глаголов с инфинитивом в стра-

248

 

 

дательном

залоге

 

 

 

 

 

 

 

 

 

§

49.

Времена

 

группы

Continuous

 

 

 

 

 

248

§

50.

Настоящее продолженное время (The Present

Continuous

248

 

 

Tense)

 

 

 

 

 

 

 

 

 

 

 

 

 

§

51.

Прошедшее

продолженное

время (The Past

Continuous

249

 

 

Tense)

.

 

 

 

 

 

 

 

 

 

 

 

§ 52.

Будущее

продолженное

время

(The

Future

Continuous

249

 

 

Tense)

 

 

 

 

 

 

 

 

 

 

 

 

 

§ 53. Времена группы Perfect

 

 

 

 

 

 

Perfect

250

§

54.

Настоящее совершенное время (The Present

250

 

 

Tense)

 

 

 

 

 

 

 

 

 

 

 

 

 

§

55.

Прошедшее совершенное время (The Past Perfect Tense)

251

§

56.

Будущее совершенное время (The Future Perfect Tense)

251

§

57.

Страдательный залог (The Passive Voice)

 

 

 

252

§

58.

Особенности употребления

страдательного залога . . .

253

И н ф и н и т и в

 

( T h e

 

I n f i n i t i v e ) . . . . . . . . .

255

§ 59.

Инфинитив

 

 

 

 

 

 

 

 

 

 

 

 

255

§ 60.

Признаки

инфинитива

 

 

 

 

 

 

 

 

256

§

61.

Инфинитивный

оборот

«сложное

подлежащее»

. . .

257

§ 62.

Инфинитивный

оборот

«сложное

дополнение»

. . . .

258

§

63.

Оборот «for -j- существительное (или местоимение)»

.

258

П р и ч а с т и е

 

( T h e

P a r t i c i p l e )

 

 

 

 

258

§ 64. Общие сведения. Формы причастия

 

 

 

 

258

§

65.

Причастие

настоящего

времени

действительного

залога

259

 

 

(The

Present

Participle

Active)

 

 

 

 

 

 

§

66.

Причастие

прошедшего

времени

(The

Past Participle) .

260

§

67.

Причастие

настоящего

времени

в

страдательном

залоге

 

 

 

(The

Present

Participle

Passive)

 

 

 

 

 

 

261

§

68.

Перфектное причастие в действительном и страдательном

 

 

 

залогах

 

 

 

 

 

 

 

 

 

 

 

 

 

 

262

§

69.

Независимый причастный оборот (The Absolute Parti-

262

 

 

ciple

Construction)

 

 

 

 

 

 

 

 

 

Г е р у н д и й

 

( T h e

 

G e r u n d )

 

 

 

 

 

 

263

§ 70.

Общие

сведения.

Формы герундия

. . .

 

 

263

§ 7 1 .

Признаки

 

герундия '

 

 

 

 

 

 

 

 

264

 

 

Сравнительная таблица функций причастия и герундия

266

Н а р е ч и е

( T h e

 

A d v e r b )

 

 

 

 

 

 

 

266

§ 72.

Общие

сведения

 

 

 

 

 

 

 

 

 

 

266

§

73.

Степени

сравнения

наречий

 

 

 

 

. . . . .

266

§ 74. Место наречий в предложении

 

 

 

 

 

 

267

М н о г о ф у н к ц и о н а л ь н о с т ь с т р о е в ы х

с л о в

 

в а н г л и й с к о м

 

я з ы к е

 

 

 

 

 

 

 

268

§

75.

Значение и употребление слова it

 

 

 

 

268

§

76.

Значение и употребление that (those)

 

 

 

269

§

77.

Значение и употребление one (ones)

 

 

 

 

270

§

78.

Значение и употребление after, before, for, since,

till,

270

 

 

until, but,

because,

as

 

 

 

 

 

 

 

§

79.

Значение и употребление only, very, due

 

 

271

§

80.

Употребление и значение both, both ... and, either, neither

271

§ 81. Общие сведения о сложном предложении

 

 

271

§ 82.

Придаточные

предложения

подлежащие

 

 

271

§

83.

Дополнительные

придаточные

предложения

. . . .

272

§ 84.

Определительные

придаточные

предложения

. . . .

272

§ 85.

Бессоюзное присоединение определительных придаточных

 

 

 

предложений к главному предложению

 

 

 

272

§ 86.

Обстоятельственные

придаточные

предложения

времени,

272

 

 

причины

и

места

 

 

 

 

 

 

 

 

 

 

§ 87.

Обстоятельственные

придаточные

предложения

условия

272

§

88.

Последовательность

времен.

Косвенный

вопрос

 

. . .

273

§

89.

Разговорные формулы

(Conversational

Formulae)

. .

275

Приложение.

Тексты для

внеаудиторного

чтения

 

 

277