
- •Гидравлика
- •1. Предмет гидравлики
- •2. Общая характеристика жидкости
- •3. Системы единиц измерения
- •4. Силы, действующие на жидкость
- •Следовательно, давление – это сила, которая действует на единицу площади и направлена по нормали.
- •5. Основные физические свойства жидкостей
- •Плотностью однородной жидкости называется отношение массы жидкости к ее объему
- •А касательное напряжение (сила, действующая на единицу площади)
- •Зависимость (5.3) выражает закон вязкого трения Ньютона и справедлива при слоистом (ламинарном) течении жидкости.
- •6. Кинематика
- •6.1. Основные определения. Виды движения
- •Потоки равномерные и неравномерные, напорные и безнапорные
- •6.2. Уравнение неразрывности для потока
- •Если жидкость несжимаема и плотность постоянна, то из (6.2) следует постоянство объёмного расхода q
- •6.3. Расход жидкости и средняя скорость
- •6.4. Изменение скорости вдоль потока
- •7. Гидростатика
- •7.1. Гидростатическое давление и его свойства
- •7.2. Основное уравнение гидростатики
- •7.3. Виды давления
- •7.4. Закон Паскаля
- •7.5. Пьезометрическая высота. Вакуум
- •Приборы для измерения давления
- •7 1.6. Напор. Удельная потенциальная энергия
- •7.7. Эпюра гидростатического давления
- •7.8. Давление жидкости на плоские фигуры
- •7.9. Давление жидкости на криволинейные поверхности
- •7.10. Закон Архимеда
- •7.11. Схемы гидравлических регуляторов
- •8. Динамика жидкости
- •8.1. Полная энергия частицы движущейся жидкости
- •8.2. Уравнение Бернулли для идеальной жидкости
- •8.3. Уравнение Бернулли для потока реальной жидкости
- •9. Гидравлические сопротивления
- •9.1. Ламинарное и турбулентное движения жидкости
- •9.2. Распределение скоростей и расход в ламинарном потоке
- •9.3. Турбулентное движение и его особенности
- •9.4. Распределение скорости по сечению круглой трубы при турбулентном режиме
- •9.5. Природа гидравлических сопротивлений. Потери по длине и местные
- •10. Экспериментальные результаты по определению потерь при турбулентном движении жидкости
- •10.1. Абсолютная и относительная шероховатость
- •10.2. Закономерности изменения коэффициента гидравлического трения
- •10.3. Зависимости для коэффициента гидравлического сопротивления и области их применения
- •10.4. Местные потери напора
- •Потери напора при внезапном расширении трубы
- •Коэффициенты местных сопротивлений в некоторых практически важных случаях
- •Значения коэффициента потерь при внезапном сужении потока
- •Вход в трубу
- •Значения коэффициента потерь
- •11. Гидравлические расчеты трубопроводов
- •11.1. Классификация трубопроводов
- •11.2. Уравнение для расчета простого трубопровода
- •11.3. Три задачи по расчету простого трубопровода
- •11.4. Последовательное и параллельное соединения трубопроводов Последовательное соединение
- •Параллельное соединение
- •11.5. Движение жидкости в трубах и каналах некруглого сечения
- •11.6. Изменение пропускной способности трубопровода в процессе его эксплуатации
- •11.7. Гидравлический удар в трубопроводах
- •11.8. Сифонный трубопровод
- •11.9. Характеристика трубопровода
- •11.10. Трубопроводы с насосной подачей жидкости
- •11.11. Формула для мощности центробежного насоса
- •11.12. Определение наивыгоднейшего диаметра трубопровода
- •12. Равномерное движение воды в открытых руслах
- •12.1. Условия равномерного движения
- •12.2. Основные расчётные формулы
- •12.3. Геометрические элементы сечения каналов
- •12.4. Основные типы задач по расчёту открытых каналов
- •13. Удельная энергия сечения
- •14. Критическая глубина
- •15. Критический уклон. Спокойные и бурные потоки
- •16. Неравномерное движение воды в открытых руслах
- •16.1. Основные определения
- •16.2. Основное уравнение неравномерного движения
- •16.4. Формы кривых свободных поверхностей для русла с прямым уклоном дна
- •16.5. Построение кривых свободной поверхности
- •17. Истечение жидкости через водосливы
- •17.1. Основные определения и обозначения
- •17.2. Классификация водосливов
- •17.3. Основная формула расхода через водослив
- •17.4. Истечение через водослив с тонкой стенкой
- •17.5. Водослив практического профиля
- •17.6. Водослив с широким порогом
- •18. Гидравлический прыжок
- •18.1. Общие сведения
- •18.2. Основное уравнение гидравлического прыжка в призматическом русле
- •18.3. Прыжковая функция и ее график
- •18.4. Определение сопряженных глубин в призматическом трапецеидальном русле
- •18.5. Определение сопряженных глубин в прямоугольном русле
- •18.6. Длина гидравлического прыжка в прямоугольном русле
- •Литература
- •Оглавление
10.4. Местные потери напора
Трубопроводы обычно состоят из отрезков прямых труб, соединенных между собой различными фасонными (соединительными) частями: тройниками, угольниками, отводами. В трубопровод могут быть включены задвижки, вентили, расходомеры, клапаны различных систем, фильтры и т.д. Кроме того, трубопровод может состоять из труб различного диаметра. Для соединения таких труб применяются особые детали, так называемые переходы. Каждая из перечисленных деталей вызывает в потоке потери напора; такого типа потери называются местными. Потери на местные сопротивления в наружных сетях водопровода обычно не превышают 15%, во внутренних сетях – 30% от потерь по длине. Однако местные потери напора в некоторых видах инженерных сетей могут достигать значительной величины: так, например, в системах отопления зданий – до 40%, в воздуховодах вентиляционных систем – до 60-70% от потерь напора по длине.
Обычно
в местных сопротивлениях существуют
застойные (вихревые) зоны или области,
в которых жидкость вращается; в них
значительные градиенты скоростей
приводят к увеличению (по сравнению с
транзитными потоками) касательных
напряжений и в конечном счете к увеличению
сил трения.Постоянный
обмен жидкостью меж- Рис.
10.2
ду застойными зонами и транзитными потоками приводит к тому, что частица, попавшая из потока в застойную зону, теряет значительную часть
механической энергии (она превращается за счет трения в тепло).
В большинстве случаев возможно предугадать расположение вихревых зон, так как в связи с изменением направления стенок изменится и направление потока, но при этом крайние струйки не изменят резко своей формы, а примут форму плавных кривых (рис. 10.2).
В конечном счете, механическая энергия всего потока в местном сопротивлении уменьшается, превращаясь в теплоту. Местные сопротивления можно условно разделить на 4 типа:
Изменение поперечного сечения потока (расширение или сужение).
Изменение направления потока (поворот).
Разделение или слияние потоков (тройники).
Комбинации названных случаев в разных устройствах.
Потери энергии (напора) в местных сопротивлениях определяются по формуле Вейсбаха
,
(10.9)
где ζ – коэффициент местного сопротивления. В большинстве практически важных случаев коэффициент местного сопротивления ζ зависит только от конструкции местного сопротивления.
Задача
10.4.
Во сколько раз возрастут потери
при повороте трубы, еслирасход
воды увеличить в 3 раза? Принять, что
коэффициент местного сопротивления
ζ
– постоянная величина.
Решение. Потери согласно (10.9) пропорциональны квадрату скорости. Средняя скорость, как и расход, увеличивается в 3 раза, поэтому потери возрастут в 9 раз.
Потери напора при внезапном расширении трубы
Представим себе участок трубопровода (рис. 10.2), на котором диаметр трубы резко увеличивается. Пусть в трубе малого диаметра скорость равна V1, а в трубе большого диаметра – V2. в курсах гидравлики доказывается, что в этом случае, т.е. при внезапном расширении трубы, потери могут быть определены по формуле
hвн.р.
=
.
В частном случае, когда скорость V2 мала по сравнению со скоростью V1 (например, при входе трубы в большой резервуар)
hвн.р.
=
.