- •Гидравлика
- •1. Предмет гидравлики
- •2. Общая характеристика жидкости
- •3. Системы единиц измерения
- •4. Силы, действующие на жидкость
- •Следовательно, давление – это сила, которая действует на единицу площади и направлена по нормали.
- •5. Основные физические свойства жидкостей
- •Плотностью однородной жидкости называется отношение массы жидкости к ее объему
- •А касательное напряжение (сила, действующая на единицу площади)
- •Зависимость (5.3) выражает закон вязкого трения Ньютона и справедлива при слоистом (ламинарном) течении жидкости.
- •6. Кинематика
- •6.1. Основные определения. Виды движения
- •Потоки равномерные и неравномерные, напорные и безнапорные
- •6.2. Уравнение неразрывности для потока
- •Если жидкость несжимаема и плотность постоянна, то из (6.2) следует постоянство объёмного расхода q
- •6.3. Расход жидкости и средняя скорость
- •6.4. Изменение скорости вдоль потока
- •7. Гидростатика
- •7.1. Гидростатическое давление и его свойства
- •7.2. Основное уравнение гидростатики
- •7.3. Виды давления
- •7.4. Закон Паскаля
- •7.5. Пьезометрическая высота. Вакуум
- •Приборы для измерения давления
- •7 1.6. Напор. Удельная потенциальная энергия
- •7.7. Эпюра гидростатического давления
- •7.8. Давление жидкости на плоские фигуры
- •7.9. Давление жидкости на криволинейные поверхности
- •7.10. Закон Архимеда
- •7.11. Схемы гидравлических регуляторов
- •8. Динамика жидкости
- •8.1. Полная энергия частицы движущейся жидкости
- •8.2. Уравнение Бернулли для идеальной жидкости
- •8.3. Уравнение Бернулли для потока реальной жидкости
- •9. Гидравлические сопротивления
- •9.1. Ламинарное и турбулентное движения жидкости
- •9.2. Распределение скоростей и расход в ламинарном потоке
- •9.3. Турбулентное движение и его особенности
- •9.4. Распределение скорости по сечению круглой трубы при турбулентном режиме
- •9.5. Природа гидравлических сопротивлений. Потери по длине и местные
- •10. Экспериментальные результаты по определению потерь при турбулентном движении жидкости
- •10.1. Абсолютная и относительная шероховатость
- •10.2. Закономерности изменения коэффициента гидравлического трения
- •10.3. Зависимости для коэффициента гидравлического сопротивления и области их применения
- •10.4. Местные потери напора
- •Потери напора при внезапном расширении трубы
- •Коэффициенты местных сопротивлений в некоторых практически важных случаях
- •Значения коэффициента потерь при внезапном сужении потока
- •Вход в трубу
- •Значения коэффициента потерь
- •11. Гидравлические расчеты трубопроводов
- •11.1. Классификация трубопроводов
- •11.2. Уравнение для расчета простого трубопровода
- •11.3. Три задачи по расчету простого трубопровода
- •11.4. Последовательное и параллельное соединения трубопроводов Последовательное соединение
- •Параллельное соединение
- •11.5. Движение жидкости в трубах и каналах некруглого сечения
- •11.6. Изменение пропускной способности трубопровода в процессе его эксплуатации
- •11.7. Гидравлический удар в трубопроводах
- •11.8. Сифонный трубопровод
- •11.9. Характеристика трубопровода
- •11.10. Трубопроводы с насосной подачей жидкости
- •11.11. Формула для мощности центробежного насоса
- •11.12. Определение наивыгоднейшего диаметра трубопровода
- •12. Равномерное движение воды в открытых руслах
- •12.1. Условия равномерного движения
- •12.2. Основные расчётные формулы
- •12.3. Геометрические элементы сечения каналов
- •12.4. Основные типы задач по расчёту открытых каналов
- •13. Удельная энергия сечения
- •14. Критическая глубина
- •15. Критический уклон. Спокойные и бурные потоки
- •16. Неравномерное движение воды в открытых руслах
- •16.1. Основные определения
- •16.2. Основное уравнение неравномерного движения
- •16.4. Формы кривых свободных поверхностей для русла с прямым уклоном дна
- •16.5. Построение кривых свободной поверхности
- •17. Истечение жидкости через водосливы
- •17.1. Основные определения и обозначения
- •17.2. Классификация водосливов
- •17.3. Основная формула расхода через водослив
- •17.4. Истечение через водослив с тонкой стенкой
- •17.5. Водослив практического профиля
- •17.6. Водослив с широким порогом
- •18. Гидравлический прыжок
- •18.1. Общие сведения
- •18.2. Основное уравнение гидравлического прыжка в призматическом русле
- •18.3. Прыжковая функция и ее график
- •18.4. Определение сопряженных глубин в призматическом трапецеидальном русле
- •18.5. Определение сопряженных глубин в прямоугольном русле
- •18.6. Длина гидравлического прыжка в прямоугольном русле
- •Литература
- •Оглавление
8.2. Уравнение Бернулли для идеальной жидкости
Представим поток идеальной жидкости конечных размеров и выберем в нем произвольные сечения 1 и 2 (рис. 8.2). Вместе с жидкостью, протекающей за единицу времени через сечение 1, вносится энергия
E1=
,
(8.6)
где
– весовой расход жидкости в этом сечении,
причем
;
– расход (объемный) через сечение 1.
Энергия, уносимая жидкостью, вытекающей
за единицу времени через сечение 2, равна
E2=
.
(8.7)
При
установившемся течении расход в любом
сечении потока постоянный, т.е.
.
В случае идеальной жидкости, когда
трение полностью отсутствует, полная
энергия жидкости между сечениями 1 и 2
сохраняет свою величину постоянной
независимо от времени, поэтому выполняется
условие
E1=E2
и, следовательно
.
(8.8)
Последнее равенство следует из закона сохранения энергии: полная механическая энергия потока идеальной жидкости в любом сечении принимает одинаковые значения. Линия полной энергии на рис. 8.2 представляет горизонтальную линию. Ниже приводятся примеры применения уравнения Бернулли.
Задача 8.1. Поток переходит из узкого сечения трубы в широкое. Определить, в каком сечении - узком или широком - давление больше. Жидкость считать идеальной.
Р
ешение.
Представим трубу горизонтальной (рис.
8.3), выберем два сечения 1-1 и 2-2 и плоскость
отсчета, совпадающую с осью трубы.
Уравнение Бернулли для данного случая
(
)
преобразуется так
![]()
или
.
Очевидно,
что
(как следует из уравнения нераз- Рис.
8.3
рывности)
и правая часть больше нуля. Следовательно,
и левая часть последнего равенства
положительна, поэтому
- давление в широкой части трубы больше.
Э
тот
результат можно получить и другим путем.
Считая жидкость идеальной, мы уверены,
что происходит лишь превращение одного
вида механической энергии в другой (без
перехода в тепло). Кинетическая энергия
жидкости при переходе от сечения 1-1 к
сечению 2-2 уменьшается. Следовательно,
потенциальная энергия возрастает и
>
.Если
представить поток в трубе, как показано
на рис. 8.4, то в узком сечении дав- Рис.
8.4
ление будет меньше, чем в широком. Если к тому же жидкость вытекает в атмосферу, то давление в узком сечении меньше атмосферного и жидкость в трубке поднимается. Поднятие жидкости из бачка – признак того, что в узком сечении потока вакуум; таким образом, устройство на рис. 8.4 является простейшим насосом. В технике явление образования вакуума в узком сечении используется в водоструйных и пароструйных насосах (инжекторах). Необходимо заметить, что в узком сечении давление может быть во много раз больше атмосферного и рассмотренный нами процесс основан именно на том, что в широком сечении, расположенном вблизи узкого, давление равно атмосферному.
Задача 8.2. Определить скорость истечения жидкости из отверстия в открытом сосуде, рис. 8.5.
Решение.
Если сосуд широкий, отверстие малое, то
скорости внутри сосуда вдали от отверстия
малы. Поэтому можно применить уравнение
Бернулли (8.8) по всему потоку в целом и
рассматривать его как один «поток». В
верхнем сечении сосуда («потока») – у
поверхности жидкости - давление
равно атмосферному, а скорость
.
В нижнем сечении «потока» в отверстии
– давление также равно атмосферному.
Если
скорость в отверстии обозначить через
V
![]()
![]()
или
, (8.9)
где h – высота уровня жидкости в сосуде.
Истечение происходит с той же скоростью,
Рис. 8.5 какую имело бы всякое тело при свободном падении с высоты h (без учета сопротивления воздуха).
