Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебники 60231.doc
Скачиваний:
18
Добавлен:
01.05.2022
Размер:
3.41 Mб
Скачать

Глава 4. Модели многосвязных технических систем

Многосвязная техническая система может состоять из подси­стем разной физической природы. Например, автомобиль вклю­чает в себя подсистемы питания, смазки, охлаждения, электроснабжения и др. Все эти подсистемы при функционировании тесно взаимодействуют друг с другом. Моделирование подобных систем удобно осуществлять на макроуровне. Для этой цели разработан универсальный аппарат с мощным программным обеспечением. Мы рассмотрим основные принципы моделиро­вания систем на макроуровне, при этом будем использовать несколько устаревшие, но весьма наглядные условные обозначе­ния элементов.

Каждый элемент технической системы выполняет вполне определенные функции. Математическое описание этой функции в форме аналитического выражения или в виде систем уравнений (алгебраических, дифференциальных, интегральных) образует ма­тематическую модель элемента. Переменные, которые фигурируют в математической модели и определяют в конечном итоге состояние или поведение элемента, принято называть переменными состояния или фазовыми переменными, а уравнения, устана­вливающие связь между разнородными фазовыми переменными в пределах одного элемента – компонентными уравнениями.

Если обозначить фазовые переменные для i-го элемента через и то компонентное уравнение можно записать в виде

(4.1)

Для объединения элементов в ансамбль (рис. 4.1) для каж­дого узла сопряжения элементов должна быть установлена зави­симость между однородными фазовыми переменными

; (4.2)

(4.3)

тех элементов i, j, ... системы, которые примыкают к данному узлу.

Рис. 4.1. Фрагмент системы элементов

В общем случае техническая система может состоять из эле­ментов разной физической природы, поэтому при объединении элементов в ансамбль могут встретиться большие трудности (при попытках установить связь между фазовыми переменными различных элементов). Такие трудности будут устранены, если для всех элементов системы использовать группы однородных фазовых переменных, имеющих одинаковое математическое опи­сание вне зависимости от типа элемента и протекающих в нем процессов. А это значит, что фазовые переменные, входящие в уравнения типа (4.1), должны отражать фундаментальные закономерности, присущие всем элементам системы. Примером фундаментальных закономерностей являются энергетические принципы, которые мы и будем брать за основу при рассмотре­нии электрических, механических, тепловых, гидравлических и пневматических подсистем.

В каждой такой подсистеме энергия может быть представлена в форме совокупностей потенциальной V и потоковой J дуальных переменных, а все многообразие элементов может быть сведено к простейшим элементам трех типов: С, L, R. На элементах С и L происходит накопление потенциальной (кинетической) энергии, а на элементе типа R – рассеивание (диссипация) эне­ргии.

Моделирующий элемент может представлять собой (заме­шать) физическую единицу системы, либо отражать отдельные свойства такой единицы в форме математических образов. По­этому при рассмотрении аналогий компонентных уравнений бы­ло бы правильно использовать понятие «компоненты», однако, в силу сложившихся традиций, мы будем называть замещающие двухполюсники элементами, имея в виду, что реальный элемент системы иногда может быть замещен двумя и более двухполюс­никами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]