
- •Основы проектирования и конструирования деталей машин
- •1. Нилов в.А., Жилин р.А, Рукин ю.Б., 2007 Оформление. Гоувпо «Воронежский государственный технический университет», 2007 о сновные положения
- •1.1.Термины и определения. Классификация
- •1.2.Основные сведения о проектировании и конструировании
- •1.3.Стадии разработки конструкторской документации
- •1.4.Стандартизация и взаимозаменяемость деталей машин
- •2.Требования к деталям машин
- •2.1.Особенности расчета деталей машин
- •2.2.Виды нагрузок, действующих на детали машин
- •2.3.Циклы напряжений и их параметры
- •2.4.Методы определения допускаемых напряжений
- •3.Соединения. Типы соединений и их характеристика
- •3.1.Общая характеристика соединений
- •3.2.Заклепочные соединения. Общие сведения
- •3.3.Классификация заклепок и заклепочных швов
- •3.4.Расчет прочных заклепочных швов
- •3.5.Условное изображение заклепочных швов на чертеже
- •4.Сварные соединения
- •4.1.Общие сведения
- •4.2.Принцип действия дуговой сварки
- •4.3.Классификация способов сварки
- •4.4.Классификация сварных соединений и швов
- •4.5.Расчет стыковых сварных швов
- •4.6.Расчет угловых сварных швов
- •4.7.Уточненный расчет комбинированного сварного шва
- •4.8.Условное изображение сварных швов на чертеже
- •Некоторые буквенно-цифровые обозначения швов
- •5.Шпоночные и шлицевые соединения
- •5.1.Типы шпоночных соединений
- •5.2.Расчет шпоночных соединений
- •5.3.Сегментные шпонки
- •5.4.Конструкция и расчет шлицевых соединений
- •6.Соединения с натягом
- •6.1.Общие сведения
- •6.2.Расчет цилиндрических соединений с натягом
- •7.Клиновые и штифтовые соединения
- •7.1.Назначение и классификация соединений
- •7.2.Классификация
- •7.3.Расчеты на прочность
- •8.Резьбовые соединения
- •8.1.Назначение и конструкция резьбовых соединений
- •8.2.Классификация резьбовых соединений
- •8.3.Распределение нагрузки между витками резьбы
- •8.4.Виды разрушений в резьбовом соединении
- •8.5.Силы, действующие в винтовой паре
- •8.5.1.Величина окружной действующей силы(q)
- •8.5.2. Момент завинчивания гайки или винта
- •8.5.3.Момент отвинчивания винта или гайки
- •8.5.4.Расчет ненапряженных болтовых соединений
- •8.6.Расчет напряженных болтовых соединений
- •9.Передачи. Общие вопросы
- •9.1.Назначение и классификация передач
- •9.2.Классификация передач
- •9.3.Основные кинематические характеристики передач
- •9.4.Передачи с постоянным передаточным числом
- •9.5.Передачи с переменным передаточным числом
- •10.Ременные передачи
- •10.1.Общие вопросы
- •10.2.Классификация ременных передач
- •10.3.Плоскоременная передача
- •10.4.Типы приводных ремней
- •10.5.Шкивы (гост 17383-72).
- •10.6.Кинематические силовые зависимости
- •10.6.1.Относительное скольжение ремня.
- •10.6.2.Динамика ременной передачи
- •10.6.3.Напряжения в ремне
- •10.7.Расчет передач по кривым скольжения
- •10.8.Клиноременная передача
- •10.8.1.Клиновые ремни (гост 1284 – 68).
- •10.8.2.Шкивы клиноременной передачи
- •10.8.3.Расчет кинематических передач
- •11.Цепные передачи
- •11.1.Общие вопросы
- •11.2.Классификация цепных передач
- •11.3.Достоинства и недостатки цепных передач
- •11.4.Детали цепных передач
- •11.4.1.Цепи
- •11.4.2.Звездочки
- •11.5.Основные параметры цепных передач
- •11.6.Критерии работоспособности и расчета цепных передач
- •11.7.Основы работы передачи
- •11.8.Расчет передачи
- •11.9.Конструирование цепных передач
- •12.Зубчатые передачи
- •12.1.Общие сведения
- •12.2.Классификация зубчатых передач
- •12.3.Точность зубчатых передач
- •12.4.Материалы зубчатых колес
- •12.5.Методы изготовления зубчатых колес
- •12.5.1.Изготовление зубчатых колес без снятия стружки
- •12.5.2.Изготовление зубчатых колес путем снятия стружки.
- •13.Виды разрушения зубьев. Критерии работоспособности и расчета
- •13.1.Виды разрушения зубьев
- •13.2.Расчет основных геометрических параметров цилиндрических прямозубых колес
- •13.3.Расчет зубьев цилиндрических прямозубых зубчатых колес на изгиб
- •14.Расчет зубьев цилиндрических зубчатых колес на контактную прочность
- •14.1.Расчет на контактную прочность
- •14.2.Особенности расчета и конструкции косозубых и шевронных зубчатых колес
- •15.Общие сведения о конических зубчатых передачах
- •15.1.Расчет основных геометрических параметров конических прямозубых колес
- •15.2.Расчет зубьев прямозубых конических передач
- •16.Расчет допускаемых напряжений
- •16.1.Расчет допускаемых напряжений
- •16.2.Силы, действующие на валы от зубчатых колес
- •16.2.1.Прямозубые цилиндрические колеса
- •16.2.2.Косозубые цилиндрические колеса
- •16.2.3.Прямозубые конические колеса
- •16.3.Винтовые и гипоидные передачи
- •17.Червячные передачи
- •17.1.Эвольвентный червяк
- •17.2.Материалы. Критерии работоспособности и расчета червячных передач
- •17.3.Расчет основных геометрических параметров червячных передач
- •17.4.Червячные колеса
- •17.5.Силы, действующие в червячном зацеплении
- •17.6.Расчет на изгиб зубьев червячного колеса
- •17.7.Расчетная нагрузка и допускаемые напряжения
- •17.8.Тепловой расчет червячных передач
- •18.Понятие о системе допусков и посадок
- •18.1.Понятие о взаимозаменяемости
- •18.2.Допуски размеров, посадок
- •18.3.Квалитеты
- •18.4.Система отверстия и система вала
- •18.5.Предельные отклонения формы и расположения поверхностей
- •19.Зубчатые и червячные редукторы. Общие сведения
- •19.1.Зубчатые и червячные редукторы
- •19.2.Классификация редукторов
- •19.3.Принципиальная конструкция цилиндрического редуктора
- •19.4.Расчет основных конструктивных параметров редукторов
- •20.Валы и оси
- •20.1.Общие вопросы
- •20.2.Классификация валов и осей
- •20.3.Элементы вала
- •20.4.Материалы для изготовления валов и осей
- •20.5.Критерии работоспособности и расчета валов и осей
- •20.6.Расчетная схема и расчетные нагрузки
- •20.7.Расчет осей и валов на статическую прочность
- •20.8.Расчет валов на статическую прочность
- •20.9.Расчет вала на статическую прочность при совместном действии изгиба и кручения
- •20.10.Расчет осей и валов на выносливость
- •20.12.Расчет осей и валов на жесткость
- •20.13.Расчет валов на колебания
- •20.14.К определению расстоянии между опорами ведомого вала
- •20.15.Последовательность расчета пролета вала
- •21. Подшипники качения
- •21.1.Подшипники качения. Общие сведения
- •21.2.Недостатки подшипников качения
- •21.3.Классификация
- •21.4.Обозначение подшипников
- •21.5.Точность подшипников качения
- •21.6.Причины выхода подшипников из строя и критерии расчета
- •21.7.Расчет подшипников качения на долговечность
- •21.8.Определение приведенной нагрузки и подбор подшипников качения
- •21.9.Подбор подшипников качения
- •21.10.Статическая грузоподъемность подшипников
- •21.11.Распределение нагрузки между телами качения
- •21.12.Смазка подшипников качения
- •21.13.Посадки подшипников
- •21.14.Зазоры в подшипниках
- •22.Подшипники скольжения
- •22.1.Общие сведения
- •22.2.Классификация
- •22.3.Конструкции подшипников скольжения
- •22.4.Подшипниковые материалы
- •22.5.Критерии работоспособности и расчета подшипников скольжения
- •22.6.Условные расчеты подшипников
- •22.7.Тепловой расчет подшипников
- •22.8.Проектировочный расчет подшипников жидкостной смазки
- •23.Конструирование подшипниковых узлов
- •23.1.Схемы установки подшипников
- •23.2.Конструирование опор валов конических шестерен
- •23.3.Конструирование опор валов-червяков
- •23.4.Установка элементов передач на валах
- •23.5.Назначение диаметров вала
- •23.6.Длины характерных участков вала
- •23.6.1.Основные способы осевого фиксирования колес (шкивов)
- •24.Муфты
- •24.1.Муфты. Общие сведения
- •24.2.Классификация муфт
- •24.3.Подбор стандартной муфты
- •24.4.Конструкции муфт
- •24.4.1.Жесткие муфты. Вид неразъемные
- •24.4.2.Муфты, разъемные в плоскости, параллельной оси вала
- •24.4.3.Муфты, разъемные в плоскости, перпендикулярной оси вала
- •24.4.4.Компенсирующие муфты
- •Заключение
- •Библиографический список
- •394026 Воронеж, Московский просп., 14
19.3.Принципиальная конструкция цилиндрического редуктора
На Рис. 19 .94 приведена конструкция одноступенчатого косозубого цилиндрического редуктора. Редуктор состоит из литого чугунного корпуса 3, в котором смонтированы подшипниковые узлы, служащие опорами для быстроходного и тихоходного валов редуктора. Подшипниковые узлы состоят из подшипника 2, крышки подшипника 1, регулировочных прокладок 19 и маслоудерживающего кольца 18. Для выходного конца вала применяют проходные крышки с уплотнениями 14. Размещение опор валов в жестком чугунном корпусе обеспечивает высокую точность зацепления и долговечность привода.
Рис. 19.94. Редуктор цилиндрический косозубый
Корпус закрыт крышкой 9. В верхней части крышки 9 имеется закрываемое смотровой крышкой 11 отверстие, предназначенное для осмотра внутренней части редуктора и заливки масла. Для обеспечения плотности стыка между смотровой крышкой 11 и отверстием установлена прокладка 10.
При сборке редуктора крышка 9 крепится к корпусу 3 двенадцатью болтами 6 с гайками 8 и пружинными шайбами 7. Центрирование отверстий под болты 6 в корпусе и крышке редуктора происходит с помощью двух штифтов 13.
Редуктор в сборе перемещают грузоподъемными средствами с помощью двух рым-болтов 12. Для слива отработанного масла служит пробка 17. Контроль уровня масла в редукторе производят жезловым маслоуказателем 16.
Быстроходный вал обычно выполняют в виде вала-шестерни 15, а зубчатое колесо 4 насаживают на тихоходный вал 4 с помощью шпоночного соединения.
19.4.Расчет основных конструктивных параметров редукторов
Для удобства сборки корпус редуктора выполняется составным – основание и крышка. Основание с помощью лап или пояса крепится к фундаменту или раме. Для точной установки крышки на основание корпуса пользуются коническими штифтами.
Корпус редуктора должен быть прочным и жестким, т.к. его деформации могут вызвать перекос валов и неравномерное распределение нагрузки по длине зубьев. Для повышения жесткости корпуса его усиливают наружными или внутренними ребрами.
Корпусы редукторов обычно выполняют литыми из серого чугуна (СЧ 15-32/ СЧ 18-36) средней прочности. Для передачи больших мощностей или ударных нагрузок корпусы отливают из высокопрочного чугуна или стали. В индивидуальном и мелкосерийном производствах корпусы редукторов изготавливают сварными из листовой стали.
Основные размеры корпуса – длина, ширина и высота – применяются в зависимости от размеров зубчатых колес. Другие размеры находятся по империческим формулам. Например, толщина (δ) стенок чугунных литых оснований корпуса равна:
мм.
Толщина стенок крышек:
δK = 0,9δ.
где: М – момент на тихоходном валу, 10 Н·м
Диаметры болтов крепления крышки:
мм.
Диаметры фундаментных болтов:
мм.
Толщина фундаментных лап:
SФ=1,5dФ.
Ширина пояса или лап для расположения болтов принимается из соотношения:
bП = (2,1 … 2,5)d.
d – диаметр болта данного пояса.
Рекомендуемый ряд крутящих моментов на тихоходных валах редукторов в соответствии с проектом международного стандарта составляет по нормальному ряду чисел со знаменателем 2 в диапазоне 1-125 Н·м и со знаменателем 1,41 в диапазоне 125–1000000 Н·м.
Передаточные числа редукторов выбирают по нормальному ряду чисел со знаменателем 1,25 (1-й предпочтительный ряд) или со знаменателем 1,12 (2-й ряд) (ГОСТ )
Межосевые расстояния быстроходной (αWБ) и тихоходной (αWT) ступеней двух и трехступенчатых редукторов зубчатых цилиндрических должны соответствовать ГОСТ
Валы, как правило, подвергают улучшению до твердости НВ 270 – 300. Валы d ≤ 80 мм допускается изготавливать из стали 45; диаметром d = 80-125 – из стали 40X; а валы d = 125 – 200 мм – из стали 40ХН; 35ХМ. Тихоходные валы имеют выходной конец, в котором напряжения кручения составляют около 28 МПа концы валов целесообразно выполнять коническими.
Опоры валов редукторов выполняются в виде подшипников качения. Обычно в опорах устанавливается по одному подшипнику качения. При малых и средних нагрузках применяют шарикоподшипники, при средних и больших – роликоподшипники. В редукторах с шевронной передачей быстроходный вал передачи устанавливают на плавающих, обычно, цилиндрических роликоподшипниках. Это обеспечивает самоустановку вала по оси и одинаковую нагрузку полушевронов.
В редукторах с конической передачей для лучшей фиксации зубчатых колес в осевом направлении валы передачи рекомендуется устанавливать на радиально-упорных, чаще конических роликоподшипниках.
Смазка зацепления при V ≤ 12,5 м/c рекомендуется картерная (окунанием). Емкость масляной ванны назначают из расчета 0,35 – 0,7 литра на I кВт передаваемой мощности (большие значения – при большей вязкости масла и наоборот). Зубчатые колеса следует погружать в масло на глубину 3-4 модуля. Тихоходные колеса (2-й и 3-й ступени) при необходимости допустимо погружать на величину до 1/3 диаметра колеса. В редукторах с быстроходными передачами применяют струйную или циркуляционную смазку, осуществляемую под давлением. Масло, прокачиваемое насосом, проходит через фильтр и при необходимости через охладитель, а затем поступает к зубьям через трубопровод и сопла. При окружной скорости V ≤ 20 м/c для прямозубых передач и при V ≤ 50 м/с для косозубых масло подается непосредственно в зону зацепления. При V > 50 м/c (V > 20 м/c) , во избежание гидравлического удара, масло подается раздельно на шестерню и колесо и на некотором расстоянии от зоны зацепления.
Смазка подшипников редуктора при V > 4 м/c может осуществляться тем же маслом, что и зубчатых колес, путем разбрызгивания масла. При V < 4 м/с предусматривается самостоятельная (консистентная) смазка. При больших скоростях и нагрузках на подшипники предусматривается смазка под давлением, осуществляемая от общей системы.
Расчет зубчатого редуктора состоит из расчета его элементов – передач, валов, шпонок, подшипников. Для редукторов большой мощности производится тепловой расчет. При расчете зубчатых передач редукторов, выполненных в виде самостоятельных агрегатов, основные параметры этих передач должны быть согласованы с соответствующими ГОСТ.
Червячные колеса с целью экономии цветных металлов выполняются с венцом из антифрикционных материалов и стальным или чугунным центром.
- бандажированная конструкция, в которой бронзовый обод (венец) посажен на стальной центр с натягом. Рекомендуется легкопрессовая реже прессовая посадки. Чтобы исключить возможность сдвига венца, ввертывают в стыкуемые поверхности винты. Конструкция применяется для колес относительно небольших размеров и ненапряженных в тепловом отношении (Рис. 19 .95).
- болтовая конструкция, в которой бронзовый венец, выполненный с фланцем, прикрепляется болтами к ступице колеса. Применяется для колес больших и средних диаметров.
- биметаллическая конструкция, бронзовый венец, который отлит в форму с предварительно вставленным в нее центром. Конструкция наиболее рациональна и применяется в редукторах серийного производства.
Рис.19.95. Типовые конструкции зубчатых венцов червячных колес
В червячных передачах, как правило, применяются подшипники качения.
Смазка червячных передач с нижним расположением червяка (Рис. 19 .96) осуществляется окунанием. Уровень масла таков, чтобы погружался в масло на глубину, близкую к высоте витка. Если червяк расположен сверху, то уровень масла роли не играет (при средних и небольших скоростях). В быстроходных передачах этого типа применяют циркуляционную – принудительную смазку.
а б
в
г
Рис.19.96. Схемы червячных редукторов: с нижним (а); с верхним (б); с боковым расположением червяка (в, г)