
- •Ответы по химии!
- •2 Химическая система (открытая, закрытая, изолированная). Внутренняя энергия.
- •5.Изобарный потенциал реакции (свободная энергия Гиббса). Критерий самопроизвольности реакций.
- •Принцип ле-шателье.Смещение химического равновесия.
- •1. Влияние температуры.
- •2. Влияние давления.
- •3. Влияние концентрации
- •10 Способы выражения концентраций растворов
- •13 Процесс электролитической диссоциации как взаимодействие веществ. Самоионизация.
- •14. Закон действующих масс в растворах электролитов. Сильные и слабые электролиты. Степень диссоциации.
- •15. Теория сильных электролитов. Активность. Коэффициент активности. Ионная сила растворов. Связь ионной силы раствора с коэффициентом активности.
- •16. Протолитическое равновесие. Кислоты, основания, амфолиты по Бренстеду.
- •17. Вода как растворитель. Дифференцирующие и нивелирующие растворители.
- •18. Автопротолиз. Ионное произведение воды. Рн
- •19. Гидролиз по катиону и аниону. Необратимый гидролиз. Константа и степень гидролиза. Расчёт pH.
- •Константа гидролиза.
- •Расчёт pH.
- •20. Буферные растворы, природные буферные системы. Расчёт pH буферных систем, буферная ёмкость.
- •21. Кислоты и основания по Льюису.
- •22. Гетерогенные равновесия. Произведение растворимости.
- •23. Химическая связь: типы связи, механизмы образования, характеристики.
- •24. Комплексные соединения (кс). Строение кс. Номенклатура кс. Классификация кс. Характер связи в кс.
- •Классификация
- •По заряду комплекса
- •По числу мест, занимаемых лигандами в координационной сфере
- •По природе лиганда
- •Химическая связь в комплексных соединениях.
- •25.Диссоциация комплексных ионов. Константа нестойкости. Комплексообразование в организме.
- •26.Изомерия кс. Комплексообразование в организме.
- •27.Строение гемма
- •28. Овр и их биологическая роль.
- •30. Коллоидные системы. Строение коллоидной частицы. Двойной электрический слой. Электрокинетические явления.
- •31. Методы очистки коллоидных растворов. Диализ, электролиз, ультрафикация.
- •32.. Получение и свойства дисперсных систем. Получение суспензий, эмульсий, коллоидных растворов.
- •33. Устойчивость дисперсных систем. Седиментационная , агрегативная и конденсационная устойчивость лиозолей. Факторы, влияющие на устойчивость лиозолей.
- •34. Коагуляция.Порог коагуляци и нго определение,правило Шульце-Гарди.Взаимная коагуляция.
- •35. Поверхностные явления и адсорбция. Адсорбционные равновесия и процессы на подвижных границах раздела фаз.Уравнение Гиббса
- •36. Поверхностно-активные и поверхностно-неактивные вещества. Изменение поверхностной активности в гомологических рядах (правило Траубе).
- •37. Поверхностное натяжение и методы его определения
- •38. Адсорбция из раствора на твёрдом адсорбенте
- •39. Адсорбционные равновесия на неподвижных границах раздела твёрдых фаз. Физическая адсорбция и хемосорбция
- •Типы адсорбционных взаимодействий
- •40.Адсорбция из растворов. Уравнение Ленгмюра. Зависимость величины адсорбции от различных факторов.
- •Зависимость величины адсорбции от:
- •41. Применения десорбциооных процессов в медицине Применение адсорбционных процессов в медицине
- •42. Хроматография
- •43. Специфические свойства вмс.
- •44. Понятие биогенности химических элементов.
- •45. Химия биогенных элементов s-блока.
- •46. Химия биогенных элементов d-блока.
- •47. Химия биогенных элементов p-блока.
- •49.Полифункциональные органические соединения
- •50 Полиамины: этилендиалин.Путресцин.Кадоверин.
- •51 Гетерофункциональные соединения
- •52 Б) Оксокислоты-адельгидо- и кетонокислоты
- •53 Гетерофункциональные производные бензольного ряда как лекарственные средства
- •54 Гетероциклическими называют циклические органические соединения, в состав цикла которых, помимо атомов углерода, входят один или несколько атомов других элементов (гетероатомов).
- •13.1.2. Номенклатура
- •13.2.1. Ароматические свойства
- •13.2.2. Кислотно-основные и нуклеофильные свойства
- •13.5.1. Гидроксипурины
- •55.Фолиевая кислота, биотин, тиамин. Понятие о строении и биологической роли. Представление об алкалоидах и антибиотиках
- •Эффекты биотина
- •Физиологические функции
- •Значение тиамина в спорте
- •Пищевые источники
- •Алкалоиды
- •Антибио́тики
- •56.Пептиды и белки
- •Свойства пептидов
- •R h2n—сн—соон
- •Биологическое значение углеводов
- •Виды углеводов
- •Гомополисахариды
- •Влияние мукополисахаридов на стабилизацию структуры коллагена дентины и эмали
- •58.Нуклеиновые кислоты
- •60.Полимеры. Понятие о полимерах медицинского назначения.
- •Полимеры медицинского назначения
30. Коллоидные системы. Строение коллоидной частицы. Двойной электрический слой. Электрокинетические явления.
Коллоидные системы, коллоиды (др.-греч. κόλλα — клей + εἶδος — вид; «клеевидные») — дисперсные системы, промежуточные между истинными растворами и грубодисперсными
Специфической особенностью коллоидных растворов по сравнению с истинными является их агрегативная неустойчивость, т.е. способность разделяться на фазы под влиянием незначительных внешних воздействий.
Но главной причиной устойчивости коллоидных систем считают наличие одноименного заряда на поверхности коллоидных частиц. Частицы не могут подойти близко друг к другу из-за электростатического отталкивания одинаковых по знаку зарядов.
С современной точки зрения, заряд на коллоидных частицах обусловлен наличием на их поверхности двойного электрического слоя (ДЭС) из ионов, возникающего либо в результате избирательной адсорбции одного из ионов электролита, находящегося в растворе, либо за счет ионизации поверхностных молекул вещества.
Двойной электрический слой (межфазный) (ДЭС) — слой ионов, образующийся на поверхности частиц в результате адсорбции ионов из раствора, диссоциации поверхностного соединения или ориентирования полярных молекул на границе фаз. Ионы, непосредственно связанные с поверхностью называются потенциалоопределяющими. Заряд этого слоя компенсируется зарядом второго слоя ионов, называемых противоионами.
ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ, группа явлений, наблюдаемых в дисперсных системах, мембранах и капиллярах; включает электроосмос, электрофорез, потенциал течения и потенциал оседания (седиментационный потенциал, или эффект Дорна). Электроосмос - течение жидкости в капиллярах и пористых телах, вызванное внеш. электрич. полем; обратное ему электрокинетическое явление - потенциал течения - появление электрич. разности потенциалов на концах капилляра или мембраны при протекании жидкости. Электрофорез - движение твердых частиц или капель, взвешенных в электролите, при наложении электрич. поля. Обратное электрокинетическое явление-появление электрич. разности потенциалов на границах облака оседающих (седиментирующих) частиц, взвешенных в электролите (эффект Дорна).
31. Методы очистки коллоидных растворов. Диализ, электролиз, ультрафикация.
При получении коллоидных растворов тем или иным методом, особенно с помощью химических реакций, практически невозможно точно предусмотреть необходимое количественное соотношение реагентов. По этой причине в образовавшихся золях может присутствовать чрезмерный избыток электролитов, что снижает устойчивость коллоидных растворов. Для получения высокоустойчивых систем и для изучения их свойств золи подвергают очистке как от электролитов, так и от всевозможных других низкомолекулярных примесей.
Очистку коллоидных растворов можно проводить либо методом диализа, либо ультрафильтрацией.
Диализ заключается в извлечении из золей низкомолекулярных веществ чистым растворителем с помощью полупроницаемой перегородки (мембраны), через которую не проходят коллоидные частицы. Периодически или непрерывно сменяя растворитель в приборе для диализа — диализаторе, можно практически полностью удалить из коллоидного раствора примеси электролитов и низкомолекулярных неэлектролитов.
Недостатком метода является большая длительность процесса очистки (недели, месяцы).
Электродиализ — это процесс диализа, ускоренный путем применения электрического тока. Прибор для его осуществления называют электродиализатором. Простейший электродиализатор представляет собой сосуд, разделенный двумя мембранами на три камеры. В среднюю камеру наливают подлежащий очистке коллоидный раствор. В боковые камеры помещают электроды от источника постоянного тока и обеспечивают подвод и отвод растворителя (воды). Под действием электрического поля происходит перенос катионов из средней камеры в катодную камеру, анионов — в анодную. Раствор в средней камере может быть в течение корот-кого времени (минуты, часы) очищен от растворенных солей.
Ультрафильтрация — фильтрование коллоидного раствора через полупроницаемую мембрану, пропускающую дисперсионную среду с низкомолекулярными примесями и задерживающую частицы дисперсной фазы или макромолекулы. Для ускорения процесса ультрафильтрации ее проводят при перепаде давления по обе стороны мембраны: под разрежением (вакуумом) или под повышенным давлением. Вакуум создают откачиванием воздуха из расположенного под фильтром сосуда, повышенное давление — нагнетанием воздуха в сосуд, расположенный над фильтром. Для предотвращения разрыва мембраны ее помещают на твердую пористую пластинку. Ультрафильтрация позволяет скорее отделить от коллоидного раствора электролиты и другие примеси (низкомолекулярные органические соединения), чем это происходит при диализе. При ультрафильтрации достигают высокой степени очистки золя, периодически разбавляя последний водой. На конечной стадии путем отсасывания дисперсионной среды можно сконцентрировать коллоидный раствор. Ультрафильтрация может применяться в сочетании с электродиализом (электроультрафильтрация), благодаря чему значительно ускоряется удаление солей из коллоидного раствора.
Поскольку поры обычной фильтровальной бумаги легко пропускают коллоидные частицы, при ультрафильтрации в качестве мембраны применяют специальные фильтры (целлофан, пергамент, асбест, керамические фильтры и т. п.). Применение мембраны с определенным размером пор позволяет разделить коллоидные частицы на фракции по размерам и ориентировочно определить эти размеры. Так были найдены размеры некоторых вирусов и бактериофагов. Все это говорит о том, что ультрафильтрация является не только методом очистки коллоид» ных растворов, но может быть использована для целей дисперсионного анализа и препаративного разделения дисперсных систем.