Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
искусственный интеллект.pdf
Скачиваний:
26
Добавлен:
10.07.2020
Размер:
27.02 Mб
Скачать

suai.ru/our-contacts

quantum machine learning

Investigating Bell Inequalities for Multidimensional Relevance Judgments

181

Fig. 1. Hilbert space representation of Order E ects

Suppose that while judging Document d, the user has the order T opicality → Reliability in mind. Then the final probability of relevance is the projection from

d →

 

2

2

 

 

 

 

 

 

| | | |

 

| | |

T

|

=

 

T

 

 

R as shown in Fig. 1a. This is calculated as

 

T d

 

2

R

 

2

0.3535

 

0.5651

2

=

0.0399. If the

user

reverses the

order

 

of relevance

 

 

 

2

 

 

 

2

2

 

 

 

 

R

T

=

dimensions

considered

while judging document d, we get d

 

 

 

 

| R| |d |

 

| T | |R |

 

=

0.9715 0.5651

 

=

0.3014, which is 7.5 times larger

(Fig. 1b).

Order E ects in decision making have been successfully modeled and predicted using the Quantum framework [7, 16].

3 Deriving a Bell Inequality for Documents

3.1CHSH Inequality

In Sect. 2, we showed how we can calculate the relevance probabilities of a document for di erent dimensions. We constructed a Hilbert space for each document, consisting of seven di erent basis, representing each dimension of relevance. Two or more such documents can be considered as a composite system by taking a tensor product of the document Hilbert spaces. If |d1 and |d2 are the state vectors of two documents, we can represent the tensor product as |d1 |d2 . Figure 2 shows the geometrical representation of two such Hilbert spaces. Here

|R hab represents

Relevance

in the Habit basis, or in IR

terms, relevance of

 

 

document d with

respect to

the Habit dimension. Similarly, |R hab

represents

irrelevance in the Habit basis.

In the CHSH inequality, we have observables A1 and A2 for a system taking values in ±1. For a document d1, we have observables corresponding to the di erent relevance dimensions. Taking the case of two relevance dimensions, Habit and Novelty, we have observables Rhab and Rnov which take values in

±1. Where Rhab = +1 corresponds to a projection on the basis vector |R hab,

− |

Rhab = 1 corresponds to the projection on its orthogonal basis vector R hab.

suai.ru/our-contacts

quantum machine learning

182 S. Uprety et al.

Fig. 2. Tensor product of two Hilbert spaces

Taking two documents as a composite system, we can write the CHSH inequality in the following way:

| Rhab1Rhab2 + Rhab1Rnov2 + Rnov1Rhab2 Rnov1Rnov2 | ≤ 2 (8)

where the subscripts 1 and 2 denote that the observables belong to document 1 and document 2 respectively. Using the fact that AB = 1 P (AB = 1) + (1) P (AB = 1) and P (AB = 1) + P (AB = 1) = 1, we can convert the above inequality into its probability form as:

1 ≤ P (Rhab1Rhab2 = 1) + P (Rhab1Rnov2 = 1)+

(9)

P (Rnov1Rhab2 = 1) + P (Rnov1Rnov2 = 1)

3

We don’t have the joint probabilities P (AB) in our dataset, hence we assuming P (AB) = P (A)P (B) (this where the assumption of realism is incorrectly made, which will not lead to the CHSH inequality violation), we get:

1≤ P (Rhab1 = 1)P (Rhab2 = 1) + P (Rhab1 = 1)P (Rhab2 = 1)+ P (Rhab1 = 1)P (Rnov2 = 1) + P (Rhab1 = 1)P (Rnov2 = 1)+

P (Rnov1 = 1)P (Rhab2 = 1) + P (Rnov1 = 1)P (Rhab2 = 1)+

P (Rnov1 = 1)P (Rnov2 = 1) + P (Rnov1 = 1)P (Rnov2 = 1) 3 (10)

As we mentioned above, Rhab = +1 corresponds to the basis vector |Rhab and therefore P (Rhab1 = 1) corresponds to the probability that document d1 is relevant with respect to the H abit dimension of relevance. Therefore we can calculate these probabilities as projections in the Hilbert space:

P (Rhab1

= 1)

= | Rhab |d1 |2

 

P (Rhab1

 

 

2

 

= 1) = | Rhab

|d1 |

 

P (Rnov1

= 1)

= | Rnov |d1 |2

 

P (Rnov1

 

 

2

(11)

= 1) = | Rnov |d1 |

and similarly for document d2.

suai.ru/our-contacts

quantum machine learning

Investigating Bell Inequalities for Multidimensional Relevance Judgments

183

3.2CHSH Inequality for Documents Using the Trace Method

Another way to define the CHSH inequality for documents is by directly calculating the expectation values using the trace rule. According to this rule, expectation value of an observable A in a state |d is given by

 

 

 

 

 

A = tr()

 

 

 

 

 

(12)

where the quantity ρ = |d d| is the density matrix for the state |d .

 

Let the two documents be represented in the standard basis as follows:

 

 

 

|

1

= a1 |H 1 + b1

|

 

1

 

 

 

 

 

 

 

 

 

D

 

 

 

|

 

 

 

 

 

|

H

 

 

 

 

 

 

|

 

 

2 + b2

 

 

 

 

 

 

D2

 

= a2

H

 

 

H

 

2

 

(13)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

0

Hence, the state vector and the density

where |H 1,2 = 0 and |H 1,2

= 1

matrix for a document

|

can be written as:

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

=

a

 

 

|

D

|

=

 

 

a12

a1b1

(14)

b

 

 

 

a1b1

b12

D

 

 

 

 

D

 

 

 

 

 

 

 

 

The document representations in another basis are as follows:

|

1 = c1 |N 1

+ d1 |

 

1

 

 

 

D

 

 

N

 

 

|D2 = c2 |N 2

+ d2 |N 2

(15)

H and N are basically relevance with respect to two relevance dimensions, say Habit and Novelty. We can write the N basis in terms of the H basis (see Appendix A) as:

 

 

 

 

N

 

 

= (a c + b

d

) H

 

+ (b

c

 

a d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

) H

 

 

 

 

 

 

 

 

 

 

|

1

 

 

1 1

 

1

1

| 1

 

 

 

1

 

1 1 1

 

|

 

1

 

 

 

(16)

 

 

 

 

|N

1 = (a1d1 − b1c1) |H 1 + (a1c1 + b1d1) |H

1

 

 

 

and similarly for the second document.

 

 

 

 

 

 

 

 

 

N

1 and

 

 

 

1 as:

Thus we get the vector representations for basis states

|

|

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

=

a1c1 + b1d1

 

 

 

 

=

 

a1d1 − b1c1

 

 

 

(17)

 

 

 

 

 

 

|

N

1

 

 

 

 

 

 

 

 

| 1

 

 

 

b1c1

a1d1

 

 

 

 

a1c1 + b1d1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now the observables H and N are defined as:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(18)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H = |H H | − |

 

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N = |H N | − |N

N

|

 

 

 

 

 

 

 

 

 

where

 

H

H

and

 

 

 

 

 

are the projection operators for standard basis vec-

|

H

 

H

|

 

 

|

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tors with eigen values 1 and 1 respectively. This is the spectral decomposi-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion of the observables. We get H = 0 1

. The matrix for observable N is