Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
искусственный интеллект.pdf
Скачиваний:
28
Добавлен:
10.07.2020
Размер:
27.02 Mб
Скачать

suai.ru/our-contacts

quantum machine learning

158 S. Gogioso and C. M. Scandolo

When it comes to this work, however, this is not much of a problem: all we need to show is that an extension of our theory can exists in which the “tree-on-a- bridge” e ect above can be completed to the discarding map, and our results— both hyper-decoherence to quantum theory and higher-order interference—will automatically apply to any such extension.

Let (x )x X be the orthonormal basis associated with the special commutative -Frobenius algebra . The e ect needed to complete (DD(H),hypdec ) to the discarding map DD(H) is itself an e ect in CPM(fHilb), which can be written explicitly as follows:

H

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

H

 

 

Ψx

(45)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ψ

 

 

 

 

 

 

 

 

 

x,y X

H

 

 

 

H

 

 

 

 

H

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s.t. x=y

 

 

 

 

Because it is an e ect in CPM(fHilb), which has R+ as its semiring of scalars, it is in particular non-negative on all states in DD(fHilb), showing that: (i) hyper-decoherence maps are sub-normalised; (ii) our theory does not satisfy the no-restriction condition; (iii) an extension to a theory with normalised hyperdecoherence is possible. This shows that our results on hyper-decoherence have physical significance. Furthermore, let |1 , ..., |d be an orthonormal basis of Cd, and let correspond to the Fourier basis for the finite abelian group Zd:

1

d

2π

 

 

 

ei

jk |j

 

(46)

 

d

 

d

 

k=1,...,d

 

 

j=1

 

 

 

 

Choosing k := d, in particular, shows that the orthonormal basis above contains

the state 1 used in Sect. 4. Then the e ect defined in Eq. 45 also shows that

d +

the computation of P[+|U ] in Sect. 4 can be done as part of a bonafide measurement in any such extended theory, and hence that our higher-order interference result has physical significance.

References

1.Barnum, H., Lee, C.M., Scandolo, C.M., Selby, J.H.: Ruling out higher-order interference from purity principles. Entropy 19(6), 253 (2017). https://doi.org/10.3390/ e19060253

2.Barnum, H., M¨uller, M.P., Ududec, C.: Higher-order interference and single-system postulates characterizing quantum theory. New J. Phys. 16(12), 123029 (2014). https://doi.org/10.1088/1367-2630/16/12/123029

3.Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Phys. Rev. A 81, 062348 (2010). https://doi.org/10.1103/PhysRevA.81. 062348

4.Chiribella, G., Scandolo, C.M.: Entanglement as an axiomatic foundation for statistical mechanics. arXiv:1608.04459 [quant-ph] (2016). http://arxiv.org/abs/1608. 04459

suai.ru/our-contacts

quantum machine learning

Density Hypercubes, Higher Order Interference and Hyper-decoherence

159

5.Chiribella, G., Scandolo, C.M.: Microcanonical thermodynamics in general physical theories. New J. Phys. 19(12), 123043 (2017). https://doi.org/10.1088/1367-2630/ aa91c7

6.Coecke, B.: Terminality implies no-signalling... and much more than that. New Gener. Comput. 34(1–2), 69–85 (2016). https://doi.org/10.1007/s00354-016- 0201-6

7.Coecke, B., Lal, R.: Causal categories: relativistically interacting processes. Found. Phys. 43(4), 458–501 (2013). https://doi.org/10.1007/s10701-012-9646-8

8.Coecke, B., Pavlovic, D., Vicary, J.: A new description of orthogonal bases. Math. Struct. Comput. Sci. 23(3), 555–567 (2013)

9.Coecke, B., Perdrix, S.: Environment and classical channels in categorical quantum mechanics. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 230–244.

Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-4 20

ˇ

10. Daki´c, B., Paterek, T., Brukner, C.: Density cubes and higher-order interference theories. New J. Phys. 16(2), 023028 (2014). https://doi.org/10.1088/1367-2630/ 16/2/023028

11. Gogioso, S., Scandolo, C.M.: Categorical probabilistic theories. In: Coecke, B., Kissinger, A. (eds.) Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3–7 July 2017. Electronic Proceedings in Theoretical Computer Science, vol. 266, pp. 367–385. Open Publishing Association (2018). https://doi.org/10.4204/EPTCS.266.23

12. Gogioso, S.: Higher-order CPM constructions. Electron. Proc. Theor. Comput. Sci. 270, 145–162 (2019). https://doi.org/10.4204/EPTCS.287.8

13. Jin, F., et al.: Experimental test of born’s rule by inspecting third-order quantum interference on a single spin in solids. Phys. Rev. A 95, 012107 (2017). https:// doi.org/10.1103/PhysRevA.95.012107

ˇ

14. Kauten, T., Keil, R., Kaufmann, T., Pressl, B., Brukner, C., Weihs, G.: Obtaining tight bounds on higher-order interferences with a 5-path interferometer. New J. Phys. 19(3), 033017 (2017). https://doi.org/10.1088/1367-2630/aa5d98

15. Krumm, M., Barnum, H., Barrett, J., M¨uller, M.P.: Thermodynamics and the structure of quantum theory. New J. Phys. 19(4), 043025 (2017). https://doi.org/ 10.1088/1367-2630/aa68ef

16. Lee, C.M., Selby, J.H.: Deriving Grover’s lower bound from simple physical principles. New J. Phys. 18(9), 093047 (2016). https://doi.org/10.1088/1367-2630/18/ 9/093047

17. Lee, C.M., Selby, J.H.: Generalised phase kick-back: the structure of computational algorithms from physical principles. New J. Phys. 18(3), 033023 (2016). https:// doi.org/10.1088/1367-2630/18/3/033023

18. Lee, C.M., Selby, J.H.: Higher-order interference in extensions of quantum theory. Found. Phys. 47(1), 89–112 (2017). https://doi.org/10.1007/s10701-016-0045-4

19. Lee, C.M., Selby, J.H., Barnum, H.: Oracles and query lower bounds in generalised probabilistic theories. arXiv:1704.05043 [quant-ph] (2017). https://arxiv.org/abs/ 1704.05043

20. Lee, C.M., Selby, J.H.: A no-go theorem for theories that decohere to quantum mechanics. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 474(2214), 20170732 (2018). https://doi.org/10.1098/rspa.2017.0732

21. Niestegge, G.: Three-slit experiments and quantum nonlocality. Found. Phys. 43(6), 805–812 (2013). https://doi.org/10.1007/s10701-013-9719-3

22. Park, D.K., Moussa, O., Laflamme, R.: Three path interference using nuclear magnetic resonance: a test of the consistency of Born’s rule. New J. Phys. 14(11), 113025 (2012). https://doi.org/10.1088/1367-2630/14/11/113025

suai.ru/our-contacts

quantum machine learning

160 S. Gogioso and C. M. Scandolo

23.Sinha, A., Vijay, A.H., Sinha, U.: On the superposition principle in interference experiments. Sci. Rep. 5, 10304 (2015). https://doi.org/10.1038/srep10304

24.Sinha, U., Couteau, C., Jennewein, T., Laflamme, R., Weihs, G.: Ruling out multi-order interference in quantum mechanics. Science 329(5990), 418–421 (2010). https://doi.org/10.1126/science.1190545

25.Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9(33), 3119–3127 (1994). https://doi.org/10.1142/S021773239400294X

26.Sorkin, R.D.: Quantum Measure Theory and its Interpretation. In: Quantum Classical Correspondence: The 4th Drexel Symposium on Quantum Nonintegrability, pp. 229–251. International Press, Boston (1997)

27.Ududec, C.: Perspectives on the formalism of quantum theory. Ph.D. thesis, University of Waterloo (2012)

28.Ududec, C., Barnum, H., Emerson, J.: Three slit experiments and the structure of quantum theory. Found. Phys. 41(3), 396–405 (2011). https://doi.org/10.1007/ s10701-010-9429-z

29.Zwart, M., Coecke, B.: Double dilation = double mixing (extended abstract). In: Coecke, B., Kissinger, A. (eds.) Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3–7 July 2017. Electronic Proceedings in Theoretical Computer Science, vol. 266, pp. 133–146. Open

Publishing Association (2018). https://doi.org/10.4204/EPTCS.266.9

˙

30. Zyczkowski, K.: Quartic quantum theory: an extension of the standard quantum mechanics. J. Phys. A 41(35), 355302 (2008). https://doi.org/10.1088/1751-8113/ 41/35/355302