- •Головне видавництво видавничого об'єднання «вища школа»
- •Передмова
- •Предмет аналітичної хімії
- •Сучасні завдання аналітичної хімії
- •Методи аналітичної хімії
- •§ 1. Закон діючих мас
- •§ 2. Теорія електролітичної дисоціації
- •§ 3. Концентрація водневих іонів води. Поняття про рН
- •§ 4. Концентрація водневих іонів розчинів кислот і основ
- •§ 5. Гідроліз. Концентрація водневих іонів розчинів солей
- •§ 6. Буферні розчини
- •§ 7. Графічний метод обчислення рН розчину
- •§ 9. Добуток розчинності
- •§ 10. Вплив однойменних іонів на розчинність осадів
- •§ 11. Розчинність осадів у кислотах
- •§ 12. Розчинність осадів при утворенні комплексів
- •§ 13. Осади кристалічні і неявнокристалічні (аморфні)
- •§ 14. Колоїдні розчини
- •Розділ 3. Комплексні сполуки
- •§ 15. Загальні положення
- •§ 16. Комплексні сполуки з неорганічними лігандами
- •§ 17. Комплексні сполуки з органічними лігандами
- •§ 18. Застосування комплексних сполук в аналізі
- •§ 19. Органічні реактиви
- •Розділ 4. Реакції окислення-відновлення
- •§ 20. Загальна характеристика
- •§ 21. Окислювально-відновний потенціал
- •§ 22. Властивості окислювально-відновного потенціалу. Рівняння Нернста
- •§ 23. Окислювальний потенціал і напрям реакцій окислення-відновлення
- •§ 24. Індуктивні реакції окислення-відновлення
- •§ 25. Хроматографічний аналіз. Іонообмінники
- •§ 26. Екстракція. Інші методи розділення
- •§ 27. Аналіз у розчині та сухий метод аналізу
- •§ 28. Макро-, мікро- і напівмікроаналіз. Краплинний, безстружковий і мікрокристалоскопічний методи аналізу
- •§ 29. Чутливість і специфічність реакцій
- •§ Зо. Хімічні реактиви
- •§ 31. Концентрація розчинів
- •§ 32. Техніка роботи в лабораторії якісного аналізу
- •§ 33. Дробний і систематичний методи якісного аналізу
- •§ 34. Класифікація катіонів на аналітичні групи
- •Розділ 7. І аналітична група катіонів
- •§ 35. Загальна характеристика групи
- •§ 36. Натрій
- •§ 38. Амоній
- •§ 39. Магній
- •§ 40. Аналіз суміші катіонів і аналітичної групи
- •Розділ 8. II аналітична група катіонів § 41. Загальна характеристика групи
- •§ 43. Стронцій
- •§ 44. Кальцій
- •§ 45. Аналіз суміші катіонів і і II аналітичних груп
- •Розділ 9. Ill аналітична група катіонів § 46. Загальна характеристика групи
- •§ 47. Алюміній
- •§ 48. Хром
- •§ 50. Марганець
- •§ 51. Цинк
- •§ 52. Кобальт
- •§ 53. Нікель
- •§ 54. Аналіз суміші катіонів III аналітичної групи
- •§ 56. Аналіз суміші катіонів III, II і і аналітичних груп, що містить фосфат-іони
- •Розділ 10. IV аналітична група катіонів
- •§ 57. Загальна характеристика групи
- •Підгрупа срібла
- •§ 59. Свинець
- •§ 60. Ртуть (і)
- •§ 61. Аналіз суміші катіонів підгрупи срібла
- •IV аналітичної групи
- •Підгрупа міді
- •§ 62. Ртуть (II)
- •§ 64. Кадмій
- •§ 65. Вісмут
- •§ 66. Аналіз суміші катіонів IV—і аналітичних груп
- •Розділ 11. V аналітична група катіонів § 67. Загальна характеристика групи
- •§ 69. Сурма
- •§ 70. Олово
- •§ 71. Аналіз суміші катіонів IV і V аналітичних груп
- •Розділ 12. Аналіз рідкісних елементів § 72. Загальна характеристика
- •§ 73. Титан
- •§ 74. Ванадій
- •§ 75. Молібден
- •§ 76. Вольфрам
- •§ 78. Безсірководневі методи якісного аналізу катіонів
- •Розділ 13. Аналіз аніонів § 79. Класифікація аніонів
- •І група аніонів
- •§ 86. Кремнієва кислота і реакції силікат-іонів SiO|—
- •II група аніонів
- •§ 91. Йодистоводнева кислота і реакції йодид-іонів і
- •§ 92. Сірководнева кислота і реакції сульфід-іонів s2-
- •Ill група аніонів
- •§ 94. Азотна кислота і реакції нітрат-іонів імог
- •§ 95. Азотиста кислота і реакції нітрит-іонів n02
- •§ 96. Оцтова кислота і реакції ацетат-іонів сн3соо
- •§ 97. Хлорнувата кислота і реакції гіпохлорат-іонів сюг
- •§ 98. Аналіз суміші аніонів і—III аналітичних груп
- •§ 100. Розчинення речовини і виявлення катіонів
- •§ 101. Виявлення аніонів
- •§ 102. Аналіз металів і сплавів
- •§ 103. Предмет і значення кількісного аналізу
- •§ 104. Визначення основних компонентів і визначення домішок
- •§ 105. Класифікація хімічних методів кількісного аналізу
- •І. Гравіметричий аналіз1
- •§ 106. Суть методу
- •§ 107. Вимоги до осадів у гравіметричному аналізі
- •§ 108. Співосадження
- •§ 109. Умови осадження
- •§ 110. Відокремлення осаду від маточного розчину
- •§ 111. Переведення осаду у вагову форму
- •§ 112. Принцип дії аналітичних терезів
- •§ 113. Правила користування аналітичними терезами і зважування на них
- •Розділ 18. Приклади гравіметричних визначень
- •§ 114. Розрахунки у гравіметричному аналізі
- •0,3115 Г становить 100%;
- •0,5025 Г становить 100%; 0,0874 г » х%,
- •§ 115. Визначення заліза у вигляді оксиду
- •§ 116. Визначення сульфатів у вигляді сульфату барію
- •§ 117. Розділення і визначення кальцію і магнію
- •§ 118. Визначення нікелю в сталях
- •II. Титриметричний аналіз Розділ 19. Загальні положення титриметричного аналізу
- •§ 119. Суть методу
- •§ 120. Концентрація розчинів і розрахунки в титриметричному аналізі
- •§ 121. Приготування робочих розчинів
- •§ 122. Методи непрямого титрування
- •§ 123. Точка еквівалентності
- •§ 124. Установлення точки еквівалентності за допомогою індикаторів
- •§ 125. Мірний посуд
- •§ 126. Перевірка мірного посуду
- •§ 127. Титрування кислотами та основами
- •§ 128. Індикатори методу кислотно-основного титрування (методу нейтралізації)
- •§ 129. Вибір індикаторів при титруванні кислотами та основами
- •§ 130. Криві титрування
- •§ 131. Помилки титрування
- •2NaHc03 ї± н20 -f- c02 -f Na2c03.
- •§ 132. Робочі розчини методу кислотно-основного титрування
- •§ 133. Приклади застосування методу кислотно-основного титрування (методу нейтралізації)
- •§ 134. Криві титрування
- •§ 135. Індикатори методів окислення-відновлення
- •§ 136. Еквівалент у реакціях окислення-відновлення
- •Розділ 22. Перманганатометрія
- •§ 137. Загальна характеристика методу. Приготування робочого розчину перманганату калію
- •§ 138. Визначення заліза
- •§ 139. Визначення пероксиду водню
- •§ 140. Визначення нітритів
- •Розділ 23. Йодометрія
- •§ 141. Загальна характеристика методу
- •§ 142. Приготування робочих титрованих розчинів
- •§ 143. Йодометричне визначення міді
- •§ 144. Йодометричне визначення активного хлору в хлорному вапні
- •B/r. WNa,s203l/NaliS!03јCl " 10°
- •§ 145. Йодометричне визначення сірки
- •Розділ 24. Метод осадження § 146. Загальна характеристика методу
- •§ 147. Індикатори
- •§ 148. Помилки титрування в методі осадження
- •§ 149. Робочі розчини і вихідні речовини методу осадження
- •§ 150. Визначення галогенід-іонів
- •Розділ 25. Методи комплексоутворення
- •§ 151. Загальні положення методів комплексоутворення
- •§ 152. Меркуриметричне визначення хлоридів
- •§ 153. Комплексонометричне визначення твердості води
- •III. Спектрофотометричний і колориметричний методи аналізу Розділ 26. Загальні положення
- •§ 154. Суть методів
- •§ 155. Загальні умови колориметричного визначення
- •§ 156. Закон Бугера—Ламберта—Бера
- •§ 157. Методи вимірювання інтенсивності забарвлення
- •§ 159. Визначення міді в грунтах
- •§ 160. Загальні положення
- •§ 161. Наближене визначення рН
- •§ 162. Безбуферні методи визначення рН
- •§ 163. Буферний метод визначення рН
- •IV. Аналіз різних матеріалів Розділ 29. Аналіз продуктів харчування § 164. Визначення кислотності хліба і молока
- •§ 165. Аналіз грунту і води
- •§ 166. Визначення оксидів кальцію і магнію в доломіті
- •Розділ 31. Аналіз добрив
- •§ 167. Визначення фосфору в суперфосфаті
- •§ 168. Визначення калію в калійних добривах
- •§ 169. Визначення азоту в аміачних добривах
- •Додатки
- •Кислоти
- •Густина розчинів їдких калі і натру
Предмет аналітичної хімії
Предмет аналітичної хімії — це методи визначення хімічного складу речовин. Аналітична хімія має два основних розділи: якісний аналіз і кількісний аналіз. Мета якісного аналізу — виявити, які елементи, іони або хімічні сполуки містяться в досліджуваній речовині. Завдання кількісного аналізу — визначити кількісні співвідношення між складовими частинами речовини, тобто визначити процентний вміст кожного елемента в ній. Результати аналізу дають можливість встановити хімічні формули синтетичних і природних сполук, оцінити відповідність різноманітних матеріалів вимогам виробництва.
Якісний та кількісний методи аналізу тісно пов'язані між собою. Вони мають спільну теорію, у них часто використовуються однакові схеми попереднього розділення елементів, а для виявлення і кількісного визначення окремих іонів застосовуються ті самі хімічні реакції. Проте якісний та кількісний аналізи мають і певні відмінності, тому їх вивчають окремо.
За характером досліджуваного матеріалу розрізняють аналіз органічних і неорганічних речовин. Виділення аналізу органічних речовин в окремий розділ аналітичної хімії зумовлене деякими особливостями цих речовин порівняно з неорганічними. У більшості випадків хімічний зв'язок у молекулах органічних сполук ковалентний, тому ці сполуки, як правило, не д ісоціюють на іони. Багато органічних речовин не розчиняються у воді, і для аналізу їх доводиться використовувати різні органічні розчинники. На відміну від розчинів неорганічних сполук, хімічні реакції між органічними речовинами відбуваються звичайно дуже повільно і часто не доходять до кінця. Аналіз органічних речовин та їх сумішей має специфічні особливості і потребує застосування спеціальних методів. У цьому підручнику розглядаються тільки методи аналізу неорганічних речовин.
Сучасна аналітична хімія має на своєму озброєнні понад 50 різних методів аналізу. їх можна поділити на дві великі групи. Перша група — хімічні й фізико-хімічні методи аналізу. Головним етапом визначення за цими методами є проведення хімічної реакції: досліджувану речовину спочатку переводять у розчин, а потім діють певним хімічним реактивом, внаслідок чого відбувається хімічне перетворення. Кінцевий егап визначення полягає в спостереженні зовнішнього ефекту хімічної реакції (якісний аналіз) або кількісному вимірюванні однієї з фізичних властивостей реактиву чи продукту реакції: інтенсивності забарвлення, об'єму тощо (кількісний аналіз).
Друга група — фізичні методи аналізу. Специфічним для цієї групи методів є те, що якісне виявлення або кількісне визначення складових частин
5
проводять спостереженням або вимірюванням певних фізичних властивостей речовини: хімічні реакції не проводять або вони мають другорядне значення. У підручнику докладно описано тільки деякі найважливіші хімічні й фізико-хімічні методи аналізу, передбачені навчальною програмою, і дається короткий загальний огляд інших методів аналізу.
Сучасні завдання аналітичної хімії
Аналітична хімія є науковою дисципліною, яка тісно пов'язана з різними галузями хімічної науки і виробництва. Методами аналітичної хімії користуються також у геології, біохімії, медицині, фізиці, сільськогосподарських та інших науках. Хімічний аналіз застосовується також для контролю якості сировини, напівфабрикатів і готової продукції. З цього випливає, що кожна галузь науки і виробництва ставить перед аналітичною хімією свої специфічні завдання. Так, для медичної науки велике значення має якісне виявлення й кількісне визначення окремих елементів, які входять до складу тканин живих організмів і зумовлюють їх нормальну фізіологічну діяльність. Методами аналітичної хімії доведено, наприклад, що тяжка хвороба людини — зоб зумовлюється недостатністю в харчовому раціоні елемента йоду. Цими методами доведено також, що важливий фермент — карбо-ангідраза є цинкорганічною сполукою; що в печінці тварин міститься кобальтоорганічна сполука, яка бере участь у процесах обміну крові. Урожайність сільськогосподарських культур значною мірою залежить від наявності в грунтах і добривах багатьох мікроелементів. У зв'язку з цим постала потреба розробити методи для визначення в добривах найменших кількостей марганцю, бору, заліза, молібдену.
Виплавляючи чавун або сталь, металург повинен знати процентний вміст заліза в руді, а також кількість шкідливих домішок — сірки, фосфору, кремнію — в готовому продукті. Ці відомості йому дає аналітична лабораторія заводу. Польові аналізи корисних копалин дають геологові можливість оцінити загальні запаси елементів і зробити висновок про економічну доцільність розробки відкритого ним родовища. Санітарна служба вимагає від хіміка-аналітика оцінки якості питної води; у харчовій промисловості треба контролювати доброякісність продуктів; для судового експерта важливо встановити характер отрути, яка спричинила смерть тощо.
У наш час перед аналітичною хімією постали дві нові важливі проблеми. Перша проблема полягає в розробці методів якісного виявлення і кількісного визначення ряду елементів, що почали використовуватися в широких масштабах не так давно. До таких елементів належать, наприклад, Nb, Та, Zr, Ті, Hf, Mo, W, рідкісноземельні елементи тощо. Вони використовуються в сучасній техніці як складові компоненти жаростійких сплавів, як конструкційні матеріали в атомній енергетиці, входять до складу багатьох спеціальних магнієвих та інших сплавів. Застосування названих елементів весь час розширюється. Так, цирконій у минулому не мав майже ніякого практичного значення, хоч був відкритий ще в кінці XVIII ст. У наш час цирконій, його сплави і сполуки використовують майже в 150 галузях. Цнр-
6
копій є складовою частиною багатьох силікатних матеріалів, спеціальних сталей, з ньоіч) виготовляють атомні реактори, сплави алюмінію, магнію. Решта назнаних і багатьох інших елементі» періодичної системи також застосовуються все ширше в техніці. Тому перед аналітичною хімією поставлене завдання розробити методи визначення цих елементів у нових поєднаннях і комбінаціях з різноманітними елементами.
Другою важливою загальною проблемою є розробка методів виявлення і визначення мікрокількостеіі елементів. За останні десятиріччя було з'ясовано, що незначні кількості елементів, наявні в основному матеріалі, відіграють важливу роль. Виявилося, наприклад, що фізичні й хімічні властивості матеріалів часто зумовлюються саме наявністю мікрокомпонептів. Титан і хром довгий час вважали крихкими металами, які не можна кувати й прокатувати, але недавно було встановлено, що ці метали в очищеному стані пластичні і що їхня крихкість зумовлена незначними домішками сторонніх елементів. Германій є одним з основних матеріалів для виготовлення напівпровідникових приладів у радіотехнічній промисловості, але він втрачає свої напівпровідникові властивості, коли на десять мільйонів атомів германію припадає більше як один атом фосфору, миш'яку чи сурми. Найменша домішка гафнію в металічному цирконії робить останній непридатним для використання в атомній промисловості. Найменші домішки титану, ванадію, вісмуту та інших металів у сталях значно змінюють їх механічні й електричні властивості. Майже всі елементи періодичної системи входять у дуже малих кількостях до складу тваринних і рослинних тканин, причому кожний елемент відіграє певну фізіологічну роль. Вимоги науки і техніки щодо визначення мікрокількостей безперервно зростають. У 1947 р. хіміки-аналітики визначали домішки, які становлять тисячні частки процента в основному матеріалі; тепер від хіміків-аналітиків вимагають методів, за допомогою яких можна було б визначити 10—10 % домішок, тобто знайти один атом одного елемента в присутності 10 або 100 млрд. атомів іншого елемента.
