- •Волоконно-оптические сети
- •1. Основные сведения о ВОЛС
- •1.1. Общие положения
- •Преимущества ВОЛС
- •Недостатки ВОЛС
- •Типовая схема системы волоконно-оптической связи
- •1.2. Основные компоненты ВОЛС
- •Литература к предисловию и главе 1
- •2. Оптическое волокно
- •2.1. Типы оптических волокон
- •Многомодовые градиентные волокна
- •Одномодовые волокна
- •2.2. Распространение света по волокну
- •Геометрические параметры волокна
- •Типы мод
- •Длина волны отсечки (cutoff wavelength)
- •Затухание
- •Потенциальные ресурсы волокна и волновое уплотнение
- •Дисперсия и полоса пропускания
- •Межмодовая дисперсия
- •Хроматическая дисперсия
- •Поляризационная модовая дисперсия
- •2.3. Характеристики поставляемых волокон
- •Градиентное многомодовое волокно
- •Функциональные свойства одномодовых волокон
- •Литература к главе 2
- •3. Пассивные оптические компоненты
- •3.1. Разъемные соединители
- •Типы конструкций
- •Вносимые потери
- •Надежность, механические, климатические и другие воздействия
- •Стандарты соединителей
- •Оптические шнуры
- •Адаптеры быстрого оконцевания
- •Механический сплайс (МС)
- •Производители и поставщики
- •3.2. Сварное соединение волокон
- •Непрерывное соединение
- •Допускается заводская прединсталляция
- •Количественные оценки качества сварки
- •3.3. Оптические разветвители
- •Древовидный разветвитель (tree coupler)
- •Звездообразный разветвитель (star coupler)
- •Ответвитель (tap)
- •Параметры, характеризующие разветвитель
- •3.4. Устройства волнового уплотнения WDM
- •Основные технические параметры WDM фильтров
- •Широкозонные и узкозонные WDM фильтры
- •3.5. Оптические изоляторы
- •Вращение плоскости поляризации
- •Принцип действия оптического изолятора
- •Технические параметры
- •3.6. Другие специальные пассивные компоненты ВОЛС
- •Аттенюаторы
- •Оптические переключатели
- •Соединительные герметичные муфты
- •Терминирование ВОК
- •Оптический узел
- •Оптические распределительные устройства (ОРУ)
- •Оптические кроссовые устройства (ОКУ)
- •Интерконнект и кросс-коннект
- •Принципы построения оптического кроссового устройства
- •Обслуживание ОКУ
- •Оптические кроссы высокой и сверхвысокой плотности
- •Характеристики
- •Примеры инсталляции кроссового оборудования
- •Литература к главе 3
- •4. Электронные компоненты систем оптической связи
- •4.1. Передающие оптоэлектронные модули
- •Типы и характеристики источников излучения
- •Светоизлучающие диоды
- •Лазерные диоды
- •Другие характеристики
- •Основные элементы ПОМ
- •4.2. Приемные оптоэлектронные модули
- •Основные элементы приемных оптоэлектронных модулей
- •Принципы работы фотоприемника
- •Технические характеристики фотоприемников
- •Лавинный фотодиод
- •Электронные элементы ПРОМ
- •4.3. Повторители и оптические усилители
- •Проблема расстояния
- •Типы ретрансляторов
- •Повторители для цифровых линий связи
- •Конструкция
- •Оптические усилители
- •4.4. Разновидности усилителей EDFA
- •Усилители на кремниевой основе
- •Усилители на фтор-цирконатной основе
- •Литература к главе 4
- •5. Сети передачи данных
- •5.1. Мультиплексирование
- •Частотное мультиплексирование FDM
- •Синхронное временное мультиплексирование
- •Статистическое (асинхронное) временное мультиплексирование
- •Инверсное мультиплексирование
- •5.2. Сети с коммутацией каналов и пакетов
- •Коммутация каналов
- •Коммутация пакетов
- •Коммутация каналов на разных скоростях и сети ISDN
- •Протокол Х.25
- •Ретрансляция кадров Frame Relay
- •Ретрансляция ячеек Cell Relay
- •Эволюция концепций передачи информации с появлением волокна
- •5.3. Эталонная модель OSI
- •Стандарты IEEE 802
- •Литература к главе 5
- •6. Сети FDDI
- •6.1. Принцип действия
- •6.2. Составляющие стандарта FDDI
- •6.3. Типы устройств и портов
- •Топологии сетей FDDI
- •6.4. Оптический обходной переключатель
- •Подключение к сети через OBS
- •Устройство OBS
- •6.5. Кабельная система и уровень PMD
- •Стандарты MMF-PMD, SMF-PMD и TP-PMD
- •Функция регистрации сигнала уровня PMD
- •Оптические соединители
- •Сравнения оптического волокна и витой пары
- •6.6. Уровень PHY
- •Синхронизация часов
- •Кодирование и декодирование данных
- •Особенности кодирования при передаче по витой паре
- •Эластичный буфер
- •Функция сглаживания
- •Фильтр повторений
- •6.7. Уровень MAC
- •Маркеры и кадры
- •Временной анализ процессов передачи маркера и кадров
- •Мониторинг и инициализация кольца
- •6.8. Обзор уровня SMT
- •Управление соединениями СМТ
- •Управление кольцом RMT
- •Управление, основанное на передаче кадров FВМ
- •Когда рекомендуется использовать технологию FDDI
- •Поставляемое оборудование
- •Литература к главе 6
- •7. Сети Ethernet/Fast Ethernet/Gigabit Ethernet
- •7.1. Сети Ethernet
- •Формат кадра Ethernet
- •Основные варианты алгоритмов случайного доступа к среде
- •Протокол CSMA/CD
- •Спецификации физического уровня IEEE 802.3 и типы портов
- •7.2. Основные типы устройств Ethernet
- •AUI интерфейс и трансиверы Ethernet
- •Рабочая станция, сетевая карта
- •Повторитель (концентратор)
- •Коммутатор
- •Расчет параметров коллизионного домена Ethernet (Модель 1)
- •Расчет параметров коллизионного домена Ethernet (Модель 2)
- •7.4. Сети Fast Ethernet
- •Архитектура стандарта Fast Ethernet
- •Физические интерфейсы Fast Ethernet
- •Типы устройств Fast Ethernet
- •Устройство/кабельный сегмент
- •7.6. Дуплексный Ethernet
- •7.7. Сети Gigabit Ethernet (стандарты IEEE 802.3z и 802.3ab)
- •Архитектура стандарта Gigabit Ethernet
- •Уровень MAC
- •Расширение носителя
- •Пакетная перегруженность
- •Типы устройств
- •7.8. Миграция Ethernet к магистральным сетям
- •Литература к главе 7
- •8. Полностью оптические сети
- •8.1. Основные определения и элементы
- •8.2. Плотное волновое мультиплексирование
- •Мультиплексоры DWDM
- •Пространственное разделение каналов и стандартизация DWDM
- •8.3. Применение оптических усилителей EDFA
- •Технические параметры усилителей EDFA
- •Классификация усилителей EDFA по способам применения
- •Расчет числа каскадов линейных усилителей EDFA
- •8.4. Оптимизация WDM/TDM
- •Протяженность линии
- •Трибные интерфейсы
- •Существующие архитектуры SDH
- •Миграция к оптическому уровню
- •8.5. Оптические коммутаторы
- •Разветвитель-коммутатор 2х2 (элемент 2х2)
- •Оптические коммутаторы nхn
- •8.6. Волновые конвертеры
- •8.7. Классификация полностью оптических сетей
- •Простая многоволновая линия связи SMWL
- •Параметры многоволновых мультиплексных линий связи
- •8.8. AON с коммутацией каналов
- •Широковещательная AON
- •AON с пассивной волновой маршрутизацией
- •AON с активной волновой маршрутизацией
- •8.9. AON с коммутацией пакетов
- •Сеть с последовательной битовой коммутацией
- •Сеть с параллельной битовой коммутацией
- •8.10. Архитектура AON
- •8.11. Прототипы и коммерческие реализации AON
- •Литература к главе 8
- •9. Сети абонентского доступа
- •9.1. Концепции развития абонентских сетей
- •Традиционная информационная абонентская сеть
- •Гибридная волоконно-коаксиальная сеть
- •Концепция "волокно в монтажный шкаф"
- •Концепция "волокно в квартиру"
- •9.2. Сети HFC
- •Спецификации физического уровня стандарта 802.14
- •Частотное распределение потоков
- •Распределение восходящих потоков
- •Распределение нисходящих потоков
- •Физические особенности восходящих и нисходящих потоков
- •Параметры
- •9.3. Платформа доступа Homeworx
- •Предоставляемые услуги
- •Основные элементы архитектуры
- •Структура потоков и транспортные характеристики Homeworx
- •Система спектрального смещения
- •Сценарии развертывания платформы Homeworx
- •9.4. Межстудийный телевизионный обмен и система DV6000
- •Оптические параметры
- •Параметры аналогового видеоканала
- •Дифференциальная фаза, град
- •Параметры звукового канала
- •Литература к главе 9
* Символы VIOLATION (нарушение) при правильной работе сети не передаются, следовательно, прием такого символа может означать либо низкое качество линии (большой уровень ошибок, помех), либо неисправность соседней передающей станции.
Особенности кодирования при передаче по витой паре
Схему кодирования 4B/5B+NRZI нельзя применять к медной кабельной системе на основе неэкранированной витой пары DTP кат.5 из-за жестких требований по электромагнитному излучению и длине сегментов- В то же время, эта схема допустима при использования экранированной витой пары IBM тип 1 или 2 - SDDI. Поэтому спецификации уровня FDDI ТР-PMD, главным образом, ориентированы на создание помехоустойчивого кода в линии на основе UTP кат.5. Рассмотрение работы уровня TP-PMD интересно вдвойне, поскольку эти спецификации также были использованы позже в стандарте Fast Ethernet (IOOBase-ТХ) - весьма популярном современном сетевом стандарте.
Для передачи сигнала по UTP кат.5 с целью уменьшения высокочастотной составляющей электромагнитного излучения и достижения максимального расстояния передачи (100 м), наряду со схемой NRZ/NRZI, дополнительно используется схема MLT-3. Также особенностью передачи по неэкранированной
витой паре является наличие скремблера на передающей стороне (дескремблера на приемной), и подстраиваемого эквалайзера, который устанавливается на приемной стороне и предшествует дескремблеру. Скремблер устанавливается после кодера MLT-3, и предназначен для уменьшения величины пиков сигналов в энергетическом спектре. Эквалайзер устанавливается на приемной стороне. Он, подстраиваясь под разную длину кабеля, принимает и преобразовывает сигнал к виду, приемлемому для дескремблера, рис. 6.17.
Рис. 6.17. Схема основных узлов уровня TP-PMD
Схема кодирования MLT-3. Эта схема описана в спецификациях TP-PMD FDDI и реализует трехуровневый выходной сигнала (+1, 0, -1). Схема аналогична NRZI в том, что перепады уровня в выходном сигнале происходят только тогда, когда на вход поступает 1. Причем, направление перехода из нулевого состояния в положительное или отрицательное определяется предысторией: если последний переход в нулевое состояние был из положительного состояния, то по приходу 1 переход будет в отрицательное состояние, и наоборот, если последний переход в нулевое состояние был из отрицательного, то по приходу 1 переход будет произведен в положительное состояние.
Максимальное число перепадов на выходе кодера имеет место тогда, когда на вход подается последовательность из единиц. Но и в этом случае период волнового фронта будет 4 бита, что эффективно ведет к уменьшению частоты сигнала в линии в 4 раза, то есть 31,25 МГц (вместо 125 МГц), что позволяет приблизиться к требованиям передачи данных по неэкранированной витой паре.
Рис. 6.18. Пример кодирования MLT-3
Скремблер. Применение кодера MLT-3 само по себе еще не достаточно хорошее решение, чтобы удовлетворить требования радиочастотного
электромагнитного излучения. Неэкранированная витая пара излучает значительно сильней экранированной витой пары, и, тем более, оптического волокна, особенно если передавать по ней сигнал с полосой 100 Мбит/с. Главное назначение скремблера - уменьшение значений энергетических пиков в спектре излучения витой пары.
Скремблер устанавливается между кодерами NRZI и MLT-3. Он модифицирует последовательность битов после кодера 4В/5В, подмешивая псевдослучайный компонент (используется полиномиальная функция х11 +х9), рис. 6.19. Этот компонент затем удаляется на приемной стороне при помощи дескремблера. Для того, чтобы можно было восстановить битовый поток на приемной стороне необходимо, чтобы скремблер и дескремблер были синхронизированы между собой. В стандарте FDDI синхронизация происходит при помощи последовательностей символов состояний линии (ILS, MLS, QLS, HLS), что создает определенный рисунок сигнала на приеме. По этому рисунку "запускается" дескремблер, Скремблер и дескремблер имеют совершенно одинаковый принцип действия и используют одно и тоже "затравочное" 11битовое число. Таким образом, двойное применение скремблирования к биту потока восстанавливает прежнее значение.
Рис. 6.19, Работа скремблера с функцией
Эластичный буфер
Из-за помех, влажности, перепадов температуры, скачков напряжения, временной нестабильности кварцевого генератора, частота часов не может быть постоянной величиной. Поэтому существует разброс по частотам часов разных станций. Полное кольцо, включая сетевые станции и кабельные коммуникации, должно сохранять битовую длину с тем, что бы ни один бит не мог быть создан или уничтожен в логическом кольце. Иначе не сохранится или исказится информация. Для этой цели используются специальные средства стабилизации, Уровень PHY предусматривает два средства: эластичный буфер и функцию сглаживания (рис. 6.14).
Приемник имеет часы с подстраиваемой частотой, для чего использует такую стандартную технику, как фазовая подстройка колебаний генератора. Передатчик, напротив, использует часы с фиксированной частотой. Эластичный буфер, установленный на каждой станции, призван компенсировать разную скорость приема и передачи битов по сети, возникающую вследствие различия частот приемных и передающих часов. Установка буфера в среднее положение (заполняется только половина ячеек буфера - буфер работает на прием) наступает
перед приходом кадра по преамбуле, которая предшествует кадру данных. Далее буфер начинает работать на прием и на передачу битов, поддерживая очередь FIFO (first in, first out ~ первым пришел, первым обслужен).
Часы передатчика стандартизованы со стабильностью ±0,005%. Эластичный буфер работает с битами символов до процедуры декодирования 4В/5В. Поэтому для передачи кадра максимальной длины 9000 символов (4500 байт х 2, так как каждый байт данных представлен двумя 5-битовыми символами в потоке по физической линии связи) или 45000 бит без переполнения буфера достаточно выбрать буфер длиной 10 бит (45000 х 0,00005 х 2 х 2 = 9, плюс 1 бит для четной полной длины), где один множитель 2 учитывает максимальный разброс частот двух часов 0,01%, а другой множитель 2 учитывает возможность дрейфа уровня заполнения буфера как в сторону заполнения, так и в сторону освобождения.
Буфер длиной в 10 бит вносит задержку при ретрансляции маркера и кадров, которая при скорости передачи 125 Мбод эквивалента 0,08 мкс. Однако, принимая во внимание дополнительные задержки, в частности, при передаче битов между регистрами, это число - так называемое латентное время станции - увеличивается, и обычно оценивается в 1 мкс [13].
Латентное время сети - это время, которое требуется маркеру, испущенному станцией, возвратиться обратно к этой станции, при условии, что ни одна из станций не захватывает маркер. Это время складывается из латентных времен на станциях и задержках на сегментах из-за конечной скорости распространения света.
Если станция передает (ретранслирует) несколько кадров, следующих друг за другом, она может не успевать переводить буфер в среднее положение до обработки следующего кадра. В этом случае процедура установки буфера в среднее положение сопровождается процессом увеличения или уменьшения длины преамбулы (которая первоначально, в момент испускания кадра станциейотправителем, составляет 16 или более символов). В частности, если настроенная частота приемных часов меньше частоты передающих часов, то возможно увеличение длины преамбулы у последовательно принимаемых кадров, так чтобы выравнивалось среднее время приема и передачи. Таким образом, по мере продвижения кадра (маркера) по сети длина предшествующей преамбулы может варьироваться от своего начального значения как в сторону увеличения, так и в сторону уменьшения (начальное значение преамбулы маркера задается на этапе его инициализации, см. п.6.7. "Уровень MAC").
Функция сглаживания
Кадры с длинной преамбулой снижают производительность сети, не внося других проблем. Но уменьшение длины преамбулы до нуля означало бы потерю информации в критической ситуации. Проблему решает специально встроенный в PHY элемент, выполняющий функцию сглаживания. Этот элемент проверяет длину преамбулы у всех приходящих кадров и, в зависимости от обстановки, вставляет или удаляет символы преамбулы с целью уменьшения разброса в длинах преамбул от их номинального значения в 16 символов. Расчеты, представленные техническим комитетом ANSI X3T9.5 на этапе разработки FDDI,