
- •Волоконно-оптические сети
- •1. Основные сведения о ВОЛС
- •1.1. Общие положения
- •Преимущества ВОЛС
- •Недостатки ВОЛС
- •Типовая схема системы волоконно-оптической связи
- •1.2. Основные компоненты ВОЛС
- •Литература к предисловию и главе 1
- •2. Оптическое волокно
- •2.1. Типы оптических волокон
- •Многомодовые градиентные волокна
- •Одномодовые волокна
- •2.2. Распространение света по волокну
- •Геометрические параметры волокна
- •Типы мод
- •Длина волны отсечки (cutoff wavelength)
- •Затухание
- •Потенциальные ресурсы волокна и волновое уплотнение
- •Дисперсия и полоса пропускания
- •Межмодовая дисперсия
- •Хроматическая дисперсия
- •Поляризационная модовая дисперсия
- •2.3. Характеристики поставляемых волокон
- •Градиентное многомодовое волокно
- •Функциональные свойства одномодовых волокон
- •Литература к главе 2
- •3. Пассивные оптические компоненты
- •3.1. Разъемные соединители
- •Типы конструкций
- •Вносимые потери
- •Надежность, механические, климатические и другие воздействия
- •Стандарты соединителей
- •Оптические шнуры
- •Адаптеры быстрого оконцевания
- •Механический сплайс (МС)
- •Производители и поставщики
- •3.2. Сварное соединение волокон
- •Непрерывное соединение
- •Допускается заводская прединсталляция
- •Количественные оценки качества сварки
- •3.3. Оптические разветвители
- •Древовидный разветвитель (tree coupler)
- •Звездообразный разветвитель (star coupler)
- •Ответвитель (tap)
- •Параметры, характеризующие разветвитель
- •3.4. Устройства волнового уплотнения WDM
- •Основные технические параметры WDM фильтров
- •Широкозонные и узкозонные WDM фильтры
- •3.5. Оптические изоляторы
- •Вращение плоскости поляризации
- •Принцип действия оптического изолятора
- •Технические параметры
- •3.6. Другие специальные пассивные компоненты ВОЛС
- •Аттенюаторы
- •Оптические переключатели
- •Соединительные герметичные муфты
- •Терминирование ВОК
- •Оптический узел
- •Оптические распределительные устройства (ОРУ)
- •Оптические кроссовые устройства (ОКУ)
- •Интерконнект и кросс-коннект
- •Принципы построения оптического кроссового устройства
- •Обслуживание ОКУ
- •Оптические кроссы высокой и сверхвысокой плотности
- •Характеристики
- •Примеры инсталляции кроссового оборудования
- •Литература к главе 3
- •4. Электронные компоненты систем оптической связи
- •4.1. Передающие оптоэлектронные модули
- •Типы и характеристики источников излучения
- •Светоизлучающие диоды
- •Лазерные диоды
- •Другие характеристики
- •Основные элементы ПОМ
- •4.2. Приемные оптоэлектронные модули
- •Основные элементы приемных оптоэлектронных модулей
- •Принципы работы фотоприемника
- •Технические характеристики фотоприемников
- •Лавинный фотодиод
- •Электронные элементы ПРОМ
- •4.3. Повторители и оптические усилители
- •Проблема расстояния
- •Типы ретрансляторов
- •Повторители для цифровых линий связи
- •Конструкция
- •Оптические усилители
- •4.4. Разновидности усилителей EDFA
- •Усилители на кремниевой основе
- •Усилители на фтор-цирконатной основе
- •Литература к главе 4
- •5. Сети передачи данных
- •5.1. Мультиплексирование
- •Частотное мультиплексирование FDM
- •Синхронное временное мультиплексирование
- •Статистическое (асинхронное) временное мультиплексирование
- •Инверсное мультиплексирование
- •5.2. Сети с коммутацией каналов и пакетов
- •Коммутация каналов
- •Коммутация пакетов
- •Коммутация каналов на разных скоростях и сети ISDN
- •Протокол Х.25
- •Ретрансляция кадров Frame Relay
- •Ретрансляция ячеек Cell Relay
- •Эволюция концепций передачи информации с появлением волокна
- •5.3. Эталонная модель OSI
- •Стандарты IEEE 802
- •Литература к главе 5
- •6. Сети FDDI
- •6.1. Принцип действия
- •6.2. Составляющие стандарта FDDI
- •6.3. Типы устройств и портов
- •Топологии сетей FDDI
- •6.4. Оптический обходной переключатель
- •Подключение к сети через OBS
- •Устройство OBS
- •6.5. Кабельная система и уровень PMD
- •Стандарты MMF-PMD, SMF-PMD и TP-PMD
- •Функция регистрации сигнала уровня PMD
- •Оптические соединители
- •Сравнения оптического волокна и витой пары
- •6.6. Уровень PHY
- •Синхронизация часов
- •Кодирование и декодирование данных
- •Особенности кодирования при передаче по витой паре
- •Эластичный буфер
- •Функция сглаживания
- •Фильтр повторений
- •6.7. Уровень MAC
- •Маркеры и кадры
- •Временной анализ процессов передачи маркера и кадров
- •Мониторинг и инициализация кольца
- •6.8. Обзор уровня SMT
- •Управление соединениями СМТ
- •Управление кольцом RMT
- •Управление, основанное на передаче кадров FВМ
- •Когда рекомендуется использовать технологию FDDI
- •Поставляемое оборудование
- •Литература к главе 6
- •7. Сети Ethernet/Fast Ethernet/Gigabit Ethernet
- •7.1. Сети Ethernet
- •Формат кадра Ethernet
- •Основные варианты алгоритмов случайного доступа к среде
- •Протокол CSMA/CD
- •Спецификации физического уровня IEEE 802.3 и типы портов
- •7.2. Основные типы устройств Ethernet
- •AUI интерфейс и трансиверы Ethernet
- •Рабочая станция, сетевая карта
- •Повторитель (концентратор)
- •Коммутатор
- •Расчет параметров коллизионного домена Ethernet (Модель 1)
- •Расчет параметров коллизионного домена Ethernet (Модель 2)
- •7.4. Сети Fast Ethernet
- •Архитектура стандарта Fast Ethernet
- •Физические интерфейсы Fast Ethernet
- •Типы устройств Fast Ethernet
- •Устройство/кабельный сегмент
- •7.6. Дуплексный Ethernet
- •7.7. Сети Gigabit Ethernet (стандарты IEEE 802.3z и 802.3ab)
- •Архитектура стандарта Gigabit Ethernet
- •Уровень MAC
- •Расширение носителя
- •Пакетная перегруженность
- •Типы устройств
- •7.8. Миграция Ethernet к магистральным сетям
- •Литература к главе 7
- •8. Полностью оптические сети
- •8.1. Основные определения и элементы
- •8.2. Плотное волновое мультиплексирование
- •Мультиплексоры DWDM
- •Пространственное разделение каналов и стандартизация DWDM
- •8.3. Применение оптических усилителей EDFA
- •Технические параметры усилителей EDFA
- •Классификация усилителей EDFA по способам применения
- •Расчет числа каскадов линейных усилителей EDFA
- •8.4. Оптимизация WDM/TDM
- •Протяженность линии
- •Трибные интерфейсы
- •Существующие архитектуры SDH
- •Миграция к оптическому уровню
- •8.5. Оптические коммутаторы
- •Разветвитель-коммутатор 2х2 (элемент 2х2)
- •Оптические коммутаторы nхn
- •8.6. Волновые конвертеры
- •8.7. Классификация полностью оптических сетей
- •Простая многоволновая линия связи SMWL
- •Параметры многоволновых мультиплексных линий связи
- •8.8. AON с коммутацией каналов
- •Широковещательная AON
- •AON с пассивной волновой маршрутизацией
- •AON с активной волновой маршрутизацией
- •8.9. AON с коммутацией пакетов
- •Сеть с последовательной битовой коммутацией
- •Сеть с параллельной битовой коммутацией
- •8.10. Архитектура AON
- •8.11. Прототипы и коммерческие реализации AON
- •Литература к главе 8
- •9. Сети абонентского доступа
- •9.1. Концепции развития абонентских сетей
- •Традиционная информационная абонентская сеть
- •Гибридная волоконно-коаксиальная сеть
- •Концепция "волокно в монтажный шкаф"
- •Концепция "волокно в квартиру"
- •9.2. Сети HFC
- •Спецификации физического уровня стандарта 802.14
- •Частотное распределение потоков
- •Распределение восходящих потоков
- •Распределение нисходящих потоков
- •Физические особенности восходящих и нисходящих потоков
- •Параметры
- •9.3. Платформа доступа Homeworx
- •Предоставляемые услуги
- •Основные элементы архитектуры
- •Структура потоков и транспортные характеристики Homeworx
- •Система спектрального смещения
- •Сценарии развертывания платформы Homeworx
- •9.4. Межстудийный телевизионный обмен и система DV6000
- •Оптические параметры
- •Параметры аналогового видеоканала
- •Дифференциальная фаза, град
- •Параметры звукового канала
- •Литература к главе 9

образом связан со спонтанным излучением инверсно-заселенных уровней на примесных атомах.
Рис. 4.18. Мощность выходного сигнала и шума в EDFA
4.4. Разновидности усилителей EDFA
Две разновидности усилителей EDFA с примесным волокном преобладают в коммерческих реализациях сегодня: на кремниевой основе, и на фторцирконатной основе [14]. При очень схожем внутреннем строении эти усилители отличаются только заготовочным волокном.
Усилители EDFA на кремниевой основе первыми появились на рынке и определили развитие благодаря возможности усиления WDM сигнала в широком спектральном интервале при небольших вносимых шумах на разных длинах волн. Сегодня оба типа усилителей (кремниевые и фтор-цирконатные) способны работать во всем диапазоне выхода оптического излучения эрбия от 1530 нм до 1560 нм. Однако оптические усилители на кремниевой основе не имеют столь ровной передаточной кривой коэффициента усиления, как усилители на фторцирконатной основе, рис. 4.19.
В силу особенностей конструкции усилители EDFA вносят определенный шум в усиливаемый сигнал, приводя к уменьшению соотношения сигнал/шум и ограничивая число каскадов и расстояние между двумя электронными регенераторами. Этот недостаток не помешал дальнейшему стремительному развитию технологии и серийного производства усилителей EDFA. Четырехволновое мультиплексирование в окне 1550 им, появившееся всего несколько лет назад, сегодня сменяется мультиплексными системами с числом волновых каналов более 40. Плата за увеличение числа каналов выражается в уменьшении удельной мощности (мощности на канал) в выходном сигнале, которая ослабевает примерно на 3 дБ при удвоении числа каналов.

Рис. 4.19. Кривая выходной мощности, представляющей собой мощность входного шума, при отсутствии сигнала на входе
Усилители на кремниевой основе
Усиление DWDM сигнала в традиционных усилителях на кремниевом волокне связано с одной технологической проблемой - нерегулярностью коэффициента усиления как функции длины волны. На рис. 4-20 а показана кривая выходной мощности при усилении 16-канального мультиплексного сигнала со скоростью на канал STM-16 (2,5 Гбит/с). Как видно, на некоторых каналах сохраняется довольно высокое отношение сигнал/шум (SNR), в то время как на других, особенно в районе 1540 нм, значение SNR низкое. В результате может оказаться, что DWDM сигнал, проходящий через усилитель на одних каналах (например, выше 1545 нм) будет имеет приемлемое SNR, а на других (район 1540 нм) не удовлетворительное для используемого приложения соотношение SNR.
Рис. 4.20. Кривые выходной мощности (сигнала и шума) при поступлении на вход усилителя DWDM сигнала для усилителей: а) на кремниевой основе (наблюдается завал в окрестности 1540 нм); б) на фтор-цирконатной основе
В результате того, что признание технологии усилителей EDFA на кремниевой основе ПРОИЗОШЛО раньше, на сегодняшний день большее распространение имеет именно эти разновидности EDFA. Некоторые потребители (операторы связи) решают проблему завала кривой простым исключением области низкого усиления от 1530 до 1542 нм, довольствуясь более узким окном. Но это может повлечь в некоторых случаях к очень высокой плотности каналов, что нежелательно, так как с ростом плотности сильней начинают проявляться нелинейные эффекты, как, например, четырехволновое смешивание. Кроме этого, принимая во внимание настоящее состояние дел по технологии фильтрации, стоимость выделения отдельных каналов из более плотного DWDM сигнала будет выше.
Другой способ решения проблемы завала состоит в намеренном предварительном селективном ослаблении входного сигнала с целью получения более ровной картины амплитуд выходных сигналов и более согласованных значений SNR на разных каналах. При выполнении селективного ослабления приходится принимать во внимание то, что энергия на других каналах также перераспределяется. В результате чего оптимизация системы становится сложной итерационной процедурой. Дополнительные сложности возникают, когда битовые скорости добавляемых или устраняемых каналов различны. Например, соотношение SNR для передачи STM-64 (10 Гбит/с) должно быть на 6 дБ больше, чем для передачи STM-16 (2,5 Гбит/с). В последнем случае, дополнительная мощность должна быть добавлена в канал STM-64.
Производители оборудования, понимая эту проблему, начинают внедрять различные самооптимизирующиеся алгоритмы в элементы полностью оптической сети [17, 18]. Обеспечение возможности динамического оптического балансирования по энергии между каналами важно не только для работы с EDFA на кремниевой основе, но и само по себе, поскольку позволяет значительно повысить надежность сети,
Усилители на фтор-цирконатной основе
Эти усилители обладают более регулярным плато. Дело в том, что фторосодержащее волокно способно поглотить больше эрбия, что и приводит к улучшению профиля в области 1530-1542 нм, которая теперь открывается для усиления DWDM сигнала.
Рис. 4.20 б показывает, насколько эффективно усиливается DWDM сигнал. Мультиплексированные каналы практически по всей полосе пропускания имеют близкие значения SNR. Это значительно упрощает процедуру оптического балансирования при воспроизведении сигналов, когда каналы добавляются или удаляются.
Фтор-цирконатный усилитель EDFA имеет один недостаток - выше (чем у кремниевого) уровень шума, что является следствием большей рабочей длины волны лазера накачки 1480 нм. Дело в том, что длина волны накачки 980 нм, характерная для кремниевого EDFA, не эффективна для работы флюоридного усилителя EDFA, поскольку на этой длине волны велико сечение поглощения,