Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
[James_Stewart]_Single_Variable_Calculus_Early_Tr(BookFi).pdf
Скачиваний:
35
Добавлен:
30.12.2019
Размер:
18.09 Mб
Скачать

710 |||| CHAPTER 11 INFINITE SEQUENCES AND SERIES

11.5 ALTERNATING SERIES

The convergence tests that we have looked at so far apply only to series with positive terms. In this section and the next we learn how to deal with series whose terms are not necessarily positive. Of particular importance are alternating series, whose terms alternate in sign.

An alternating series is a series whose terms are alternately positive and negative. Here are two examples:

 

 

 

1

 

1

 

1

 

1

 

1

 

1

n 1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

2

3

4

5

6

n 1

 

 

 

 

1

 

2

 

3

 

4

 

5

 

6

 

 

 

 

n

 

 

 

 

 

 

 

1 n

 

 

 

 

 

 

 

n 1

2 3

4

5

6

7

n 1

 

 

We see from these examples that the nth term of an alternating series is of the form

an 1 n 1bn or an 1 nbn

where bn is a positive number. (In fact, bn an .)

The following test says that if the terms of an alternating series decrease toward 0 in absolute value, then the series converges.

THE ALTERNATING SERIES TEST If the alternating series

 

 

1 n 1bn b1 b2 b3 b4 b5 b6 bn 0

n 1

 

satisfies

 

(i)

bn 1 bn for all n

(ii)

lim bn 0

 

n l

then the series is convergent.

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind the proof. We first plot s1 b1 on a number line. To find s2 we subtract b2, so s2 is to the left of s1. Then to find s3 we add b3, so s3 is to the right of s2. But, since b3 b2, s3 is to the left of s1. Continuing in this manner, we see that the partial sums oscillate back and forth. Since bn l 0, the successive steps are becoming smaller and smaller. The even partial sums s2, s4, s6, . . . are increasing and the odd partial sums s1, s3, s5, . . . are decreasing. Thus it seems plausible that both are converging to some number s, which is the sum of the series. Therefore we consider the even and odd partial sums separately in the following proof.

 

 

 

 

 

 

 

 

 

 

 

 

 

-b™

 

 

 

 

 

 

 

+b£

 

 

 

 

 

 

 

 

 

-b¢

 

 

 

 

 

 

 

+b∞

 

 

 

 

 

 

 

 

 

-bß

 

 

 

F I G U R E 1

0

s™

s

s∞

N Figure 2 illustrates Example 1 by showing the graphs of the terms an 1 n 1 n and the partial sums sn. Notice how the values of sn zigzag across the limiting value, which appears to be about 0.7. In fact, it can be proved that the exact sum of the series is ln 2 0.693 (see Exercise 36).

1

 

 

sn

 

an

0

n

F I G U R E 2

 

SECTION 11.5 ALTERNATING SERIES |||| 711

PROOF OF THE ALTERNATING SERIES TEST We first consider the even partial sums:

s2

b1 b2 0

since b2 b1

s4

s2 b3 b4 s2

since b4 b3

In general s2n s2n 2 b2n 1 b2n s2n 2

since b2n b2n 1

Thus

0 s2 s4 s6 s2n

But we can also write

 

 

s2n b1 b2 b3 b4 b5 b2n 2 b2n 1 b2n

Every term in brackets is positive, so s2n b1 for all n. Therefore the sequence s2n of even partial sums is increasing and bounded above. It is therefore convergent by the Monotonic Sequence Theorem. Let’s call its limit s, that is,

lim s2n s

 

 

n l

Now we compute the limit of the odd partial sums:

lim s2n 1 lim s2n b2n 1

n l

n l

 

 

lim s2n lim b2n 1

 

n l

n l

 

s 0

[by condition (ii)]

 

s

 

Since both the even and odd partial sums converge to s, we have limn l sn s

 

[see Exercise 80(a) in Section 11.1] and so the series is convergent.

M

 

EXAMPLE 1 The alternating harmonic series

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

n 1

 

 

1

 

 

 

 

 

1

 

 

2

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

4

 

 

 

n 1

 

 

 

 

 

 

 

 

 

satisfies

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

(i)

bn 1 bn

 

 

because

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1

n

 

 

(ii)

lim bn lim

 

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n l

 

n l n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

so the series is convergent by the Alternating Series Test.

 

 

 

 

 

 

 

 

 

M

 

 

 

 

1

n

3n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 2 The series

 

 

is alternating but

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1

 

4n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim bn lim

 

 

3n

lim

 

 

3

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

n l

 

 

n l 4n 1

n l

4

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

712 |||| CHAPTER 11 INFINITE SEQUENCES AND SERIES

N Instead of verifying condition (i) of the Alternating Series Test by computing a derivative, we could verify that bn 1 bn directly by using the technique of Solution 1 of Example 12 in Section 11.1.

N You can see geometrically why the Alternating Series Estimation Theorem is true by looking at Figure 1 (on page 710). Notice that

s s4 b5 , s s5 b6 , and so on. Notice also that s lies between any two consecutive partial sums.

so condition (ii) is not satisfied. Instead, we look at the limit of the nth term of the series:

lim an lim

 

1 n 3n

 

 

 

4n 1

 

n l

 

 

n l

 

 

This limit does not exist, so the series diverges by the Test for Divergence.

M

 

 

 

n2

 

 

 

 

EXAMPLE 3 Test the series 1 n 1

 

 

 

 

for convergence or divergence.

 

n

3

1

 

n 1

 

 

 

 

 

SOLUTION The given series is alternating so we try to verify conditions (i) and (ii) of the Alternating Series Test.

Unlike the situation in Example 1, it is not obvious that the sequence given by

bn n2 n3 1 is decreasing. However, if we consider the related function f x x2 x3 1 , we find that

f x

x 2 x3

x3 1 2

Since we are considering only positive x, we see that f x 0 if 2 x3 0, that is,

x s3 2 . Thus f is decreasing on the interval (s3 2 , ). This means that f n 1 f n and therefore bn 1 bn when n 2. (The inequality b2 b1 can be verified directly but all that really matters is that the sequence bn is eventually decreasing.)

Condition (ii) is readily verified:

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

n2

 

 

 

 

 

 

 

 

lim bn lim

lim

 

n

0

 

 

1

 

 

n l

n l n3 1

n l

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

n3

 

 

Thus the given series is convergent by the Alternating Series Test.

M

ESTIMATING SUMS

A partial sum sn of any convergent series can be used as an approximation to the total sum s, but this is not of much use unless we can estimate the accuracy of the approximation. The error involved in using s sn is the remainder Rn s sn. The next theorem says that for series that satisfy the conditions of the Alternating Series Test, the size of the error is smaller than bn 1, which is the absolute value of the first neglected term.

ALTERNATING SERIES ESTIMATION THEOREM

If s 1 n 1bn is the sum of an

alternating series that satisfies

 

 

(i)

0 bn 1 bn

and

(ii) lim bn 0

 

 

 

n l

then

Rn s sn bn 1

 

 

 

 

PROOF We know from the proof of the Alternating Series Test that s lies between any two consecutive partial sums sn and sn 1. It follows that

s sn sn 1 sn bn 1 M

SECTION 11.5 ALTERNATING SERIES |||| 713

 

 

1

n

 

EXAMPLE 4 Find the sum of the series

 

correct to three decimal places.

V

 

n!

 

 

n 0

 

 

(By definition, 0! 1.)

 

 

 

SOLUTION We first observe that the series is convergent by the Alternating Series Test

because

 

 

1

1

1

(i)n 1 ! n! n 1 n!

(ii) 0

1

 

1

l 0

so

1

l 0 as n l

n!

n

 

 

 

 

 

n!

To get a feel for how many terms we need to use in our approximation, let’s write out the first few terms of the series:

 

s

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

0!

1!

2!

3!

 

 

 

 

 

 

 

4!

 

5!

 

 

 

6!

7!

 

 

1 1 21 61

1

 

1

 

 

1

 

 

1

 

 

 

24

120

720

5040

Notice that

 

 

 

 

b7

1

 

 

 

1

 

 

0.0002

 

 

 

 

 

 

 

 

 

 

5040

5000

 

 

 

 

 

 

and

 

s6 1 1 21 61

1

 

 

 

 

1

 

 

1

0.368056

24

120

720

N In Section 11.10 we will prove that

e x n 0 x n n! for all x, so what we have obtained in Example 4 is actually an approxi-

By the Alternating Series Estimation Theorem we know that

s s6 b7 0.0002

 

This error of less than 0.0002 does not affect the third decimal place, so we have

 

s 0.368 correct to three decimal places.

M

mation to the number e 1.

|

 

NOTE

The rule that the error (in using sn to approximate s) is smaller than the first

 

neglected term is, in general, valid only for alternating series that satisfy the conditions

 

of the Alternating Series Estimation Theorem. The rule does not apply to other types of

 

series.

11.5EXERCISES

1.(a) What is an alternating series?

(b)Under what conditions does an alternating series converge?

(c)If these conditions are satisfied, what can you say about the remainder after n terms?

2–20 Test the series for convergence or divergence.

2.13 24 35 46 57

3.47 48 49 104 114

4.

1

 

 

1

 

 

1

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s2

 

 

s3

 

s4 s5

 

s6

 

 

 

 

 

 

5.

 

1

n 1

 

6.

 

1

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1 2n 1

 

 

 

 

 

 

 

 

 

 

 

n 1 ln n 4

 

 

 

 

 

 

 

 

 

3n 1

 

 

 

 

 

 

 

 

n

7.

1 n

 

8.

 

1 n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n 1

sn

3

2

 

n 1

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

n

 

 

9.

1 n

 

 

n

 

 

n 1

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

n 2

11.

 

1 n 1

 

 

 

 

n

3

4

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

13.

 

1 n

 

 

 

 

 

ln n

 

 

n 2

 

 

 

 

 

 

cos n

 

 

 

15.

 

 

 

 

 

 

 

 

 

 

n

3 4

 

 

 

 

n 1

 

 

 

 

 

 

 

 

17.1 n sin

n 1

 

 

 

n

 

 

n

n

19.

1 n

 

 

n!

n 1

 

 

 

 

 

 

 

s

n

 

10.

 

1 n

 

 

 

 

 

 

 

 

 

 

 

 

1 2sn

 

n 1

 

 

 

 

 

e

1 n

12.

 

1 n 1

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln n

14.

 

1 n 1

 

n

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

sin n 2

n 1 n!

18.1 n cos

n 1

 

 

 

n

n 1

5

n

 

 

n

 

20.

 

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]