Скачиваний:
149
Добавлен:
09.05.2014
Размер:
217.6 Кб
Скачать

4.Гравитационные силы

В природе известны лишь четыре основные фундаментальные силы (их еще называют основными взаимодействиями) - гравитационное взаимодействие, электромагнитное взаимодействие, сильное взаимодействие и слабое взаимодействие.

Гравитационное взаимодействие является самым слабым из всех. Гравитационные силы связывают воедино части земного шара и это же взаимодействие определяет крупномасштабные события во Вселенной.

Электромагнитное взаимодействие удерживает электроны в атомах и связывает атомы в молекулы. Частным проявлением этих сил являются кулоновские силы, действующие между неподвижными электрическими зарядами.

Сильное взаимодействие связывает нуклоны в ядрах. Это взаимодействие является самым сильным, но действует оно только на весьма коротких расстояниях.

Слабое взаимодействие действует между элементарными частицами и имеет очень малую дальность. Оно проявляется при бета-распаде.

4.1.Закон всемирного тяготения Ньютона

Между двумя материальными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m и М) и обратно пропорциональная квадрату расстояния между ними (r2) и направленная вдоль прямой, проходящей через взаимодействующие тела F= (GmM/r2)ro,(1)

здесь ro - единичный вектор, проведенный в направлении действия силы F (рис.1а).

Эта сила называется гравитационной силой (или силой всемирного тяготения). Гравитационные силы всегда являются силами притяжения . Сила взаимодействия между двумя телами не зависит от среды, в которой находятся тела.

g1 g2

m r M

Рис.1а Рис.1b Рис.1с

Постоянная G называется гравитационной постоянной. Ее значение установлено опытным путем: G = 6.6720.10-11 Н.м2/кг2 - т.е. два точечных тела массой по 1кг каждое, находящихся на расстоянии 1 м друг от друга, притягиваются с силой 6.6720.10-11 Н. Очень малая величина G как раз и позволяет говорить о слабости гравитационных сил - их следует принимать во внимание только в случае больших масс.

Массы, входящие в уравнение (1), называются гравитационными массами. Этим подчеркивается, что в принципе массы, входящие во второй закон Ньютона (F=mинa)и в закон всемирного тяготения (F=(GmгрMгр/r2)ro), имеют различную природу. Однако установлено, что отношение mгр/ mин для всех тел одинаково с относительной погрешностью до 10-10.

4.2.Гравитационное поле (поле тяготения) материальной точки

Считается, что гравитационное взаимодействие осуществляется с помощью гравитационного поля (поля тяготения), которое порождается самими телами. Вводится две характеристики этого поля: векторная - напряженность гравитационного поля и скалярная - потенциал гравитационного поля.

4.2.1.Напряженность гравитационного поля

Пусть имеем материальную точку с массой М. Считается, что вокруг этой массы возникает гравитационное поле. Силовой характеристикой такого поля является напряженность гравитационного поляg, которая определяется из закона всемирного тяготения g = (GM/r2)ro,(2)

где ro - единичный вектор, проведенный из материальной точки в направлении действия гравитационной силы. Напряженность гравитационного поля g есть векторная величина и является ускорением, получаемым точечной массой m, внесенной в гравитационное поле, созданным точечной массой М. Действительно, сравнивая (1) и (2), получаем для случая равенства гравитационной и инертной масс F = mg.

Подчеркнем, что величина и направление ускорения, получаемое телом, внесенным в гравитационное поле, не зависит от величины массы внесенного тела. Поскольку основной задачей динамики является определение величины ускорения, получаемого телом под действием внешних сил, то, следовательно, напряженность гравитационного поля полностью и однозначно определяет силовые характеристики гравитационного поля . Зависимость g(r) приведена на рис.2a.

gj M m m

F

r r

r dr

Рис.2а Рис.2b Рис.2с

Поле называется центральным, если во всех точках поля векторы напряженности направлены вдоль прямых, которые пересекаются в одной точка, неподвижной по отношению к какой-либо инерциальной системе отсчета. В частности, гравитационное поле материальной точки является центральным: во всех точках поля векторы g и F=mg, действующие на тело, внесенное в гравитационное поле, направлены радиально от массы М, создающей поле, к точечной массе m (рис.1b).

Закон всемирного тяготения в форме (1) установлен для тел, принимаемых за материальные точки, т.е. для таких тел, размеры которых малы по сравнению с расстоянием между ними. Если же размерами тел пренебречь нельзя, то тела следует разбить на точечные элементы, по формуле (1) подсчитать силы притяжения между всеми попарно взятыми элементами и затем геометрически сложить. Напряженность гравитационного поля системы, состоящей из материальных точек с массами М1, М2, ..., Мn, равна сумме напряженностей полей от каждой из этих масс в отдельности (принцип суперпозиции гравитационных полей): g=gi, где gi = (GМi/ri2)ro i - напряженность поля одной массы Мi.

Графическое изображение гравитационного поля с помощью векторов напряженности g в различных точках поля очень неудобно: для систем, состоящих из многих материальных точек, вектора напряженности накладываются друг на друга и получается весьма запутанная картина. Поэтому для графического изображения гравитационного поля используют силовые линии (линии напряженности), которые проводят таким образом, что вектор напряженности направлен по касательной к силовой линии. Линии напряженности считаются направленными так же, как вектор g (рис.1с), т.е. силовые линии оканчиваются на материальной точке. Так как в каждой точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются. Для материальной точки силовые линии представляют собой радиальные прямые, входящие в точку (рис.1b).

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности поля, эти линии проводят с определенной густотой: число линий напряженности, пронизывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектор g.