Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АммерКарелинФизикаЛекц.doc
Скачиваний:
433
Добавлен:
03.03.2016
Размер:
5.13 Mб
Скачать

Движение материальной точки по окружности. Угловая скорость и угловое ускорение и их связь с линейными характеристиками движения

Движение по окружности – частный случай криволинейного движения. Скорость тела в любой точке криволинейной траектории направлена по касательной к ней (рис.2.1). Скорость как вектор при этом может изменяться и по модулю (величине) и по направлению. Если модуль скоростиостается неизменным, то говорят оравномерном криволинейном движении.

Пусть тело движется по окружности с постоянной по величине скоростью из точки 1 в точку 2.

Рис.2.1

При этом тело пройдет путь, равный длине дуги ℓ12между точками 1 и 2 за времяt. За это же времяtрадиус- векторR, проведенный из центра окружности 0 к точке, повернется на угол Δφ.

Вектор скорости в точке 2 отличается от вектора скорости в точке 1 по направлениюна величину ΔV:

;

Для характеристики изменения вектора скорости на величину δv введем ускорение :

(2.4)

Вектор в любой точке траектории направлен по радиусуRкцентруокружности перпендикулярно к вектору скоростиV2. Поэтому ускорение, характеризующее при криволинейном движении изменение скоростипо направлению, называютцентростремительным или нормальным. Таким образом, движение точки по окружности с постоянной по модулю скоростью являетсяускоренным.

Если скорость изменяется не только по направлению, но и по модулю (величине), то кроме нормального ускорениявводят еще икасательное (тангенциальное) ускорение, которое характеризует изменение скорости по величине:

или

Направлен вектор по касательной в любой точке траектории (т.е. совпадает с направлением вектора). Угол между векторамииравен 900.

Полное ускорение точки, движущейся по криволинейной траектории, определяется как векторная сумма (рис.2.1.).

.

Модуль вектора .

Угловая скорость и угловое ускорение

При движении материальной точки по окружностирадиус-векторR, проведенный из центра окружности О к точке, поворачивается на угол Δφ (рис.2.1). Для характеристики вращения вводятся понятия угловой скорости ω и углового ускорения ε.

Угол φ можно измерять в радианах. 1 радравен углу, который опирается на дугу ℓ, равную радиусуRокружности, т.е.

или12 = Rφ(2.5.)

Продифференцируем уравнение (2.5.)

(2.6.)

Величина dℓ/dt=Vмгн. Величину ω =dφ/dtназываютугловой скоростью(измеряется в рад/с). Получим связь между линейной и угловой скоростями:

V = ωR, (2.7)

Величина ω векторная. Направление вектораопределяетсяправилом винта (буравчика): оно совпадает с направлением перемещения винта, ориентированного вдоль оси вращения точки или тела и вращаемого в направлении поворота тела (рис.2.2), т.е..

Рис.2.2

Угловым ускорениемназывается векторная величина производная от угловой скорости (мгновенное угловое ускорение)

, (2.8.)

Вектор совпадает с осью вращения и направлен в туже сторону, что и вектор, если вращение ускоренное, и в противоположную, если вращение замедленное.

Число оборотов n тела в единицу времени называют частотой вращения.

Время Т одного полного оборота тела называют периодом вращения. При этом R опишет угол Δφ=2π радиан

n=1/T

С учетом сказанного

, (2.9)

Уравнение (2.8) можно записать следующим образом:

(2.10)

Тогда тангенциальная составляющая ускорения

а=R(2.11)

Нормальное ускорение аnможно выразить следующим образом:

с учетом (2.7) и (2.9)

(2.12)

Тогда полное ускорение .

Для вращательного движения с постоянным угловым ускорением можно записать уравнение кинематики по аналогии с уравнением (2.1) – (2.3) для поступательного движения:

,

.