Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АммерКарелинФизикаЛекц.doc
Скачиваний:
433
Добавлен:
03.03.2016
Размер:
5.13 Mб
Скачать

3.6. Принцип относительности в электродинамике

В конце 19 века были получены опытные данные, которые не могли быть объяснены с позиций физики Ньютона. В частности, если источник и приемник света движутся навстречу друг другу равномерно и прямолинейно, то скорости их по Ньютону должны складываться. Однако, американский физик Майкельсон и другие, проводя опыты с помощью чувствительного интерферометра, показали, что скорости света в вакууме не зависят от скорости движения источника и приемника и одинаковы во всех инерциальных системах отсчета. Эйнштейн пришел к выводу, что постоянство скорости света– фундаментальный закон природы. Этот вывод был положен Эйнштейном в основу разработанной им специальная теории относительности (см. раздел 2.5). Была также доказана инвариантность уравнений Максвелла (см. раздел 3.5) относительно преобразований Лоренца, тогда как они не инвариантны относительно преобразований Галилея (см. 2.4). Из теории Эйнштейна следовало, что электромагнитные взаимодействия (например, зарядов) передаются в вакууме со скоростью, ограниченной скоростью света, через поле (концепция близкодействия) во всех системах отсчета.

Разделение электромагнитного поля на электрическое и магнитное поля относительно – в природе существует единое электромагнитное поле. Свет также имеет электромагнитную природу (рис.3.27).

На основе специальной теории относительности были объяснены закономерности эффекта Доплерадля электромагнитных волн. При удалении источника света от наблюдателя со скоростьюVпроисходит изменение частоты (или длины волны на величину Δλ) в спектре излучения источника с длиной волны излучения λ (красное смещение):

Эффект Доплера нашел применение в радиолокации для измерения скорости Vи расстояния до движущегося объекта, в астрофизике - для измерения скоростей удаления галактик и т.д.

Обусловленное конечностью скорости света изменение видимого положения звезд на небесной сфере получило название аберрации света.

3.7. Квазистационарное магнитное поле

Ток смещения принципиально отличается от тока проводимости – он не связан с движением зарядов. Он обусловлен только изменением во времени электрического поля (см.3.5). Даже в вакууме изменение электрического поля приводит к возникновению в окружающем пространстве магнитного поля. Именно по этому признаку ток смещения тождественен току проводимости и это дает возможность условно называть его «током».

Ток смещения jсмвозникает не только в вакууме или диэлектриках, но и в проводниках при прохождении по ним переменного тока проводимостиjпр. Однако он мал по сравнению сjпр(ввиду этого им пренебрегают).

В массивных проводниках, помещенных в переменное магнитное поле, могут в соответствии с законом (3.70) наводиться индукционные токи. Эти токи являются вихревыми в объеме проводников и известны как токи Фуко.

Токи Фуко создают собственное магнитное поле, которое в соответствии с правилом Ленца (см.3.73) препятствуют изменению вызвавшему их магнитного потока. Высокочастотные токи Фуко приводят к нагреванию проводников, что позволяет их применять для плавки металлов в индукционных печах, в микроволновых печах для нагревания проводящих токи продуктов, в физиотерапии (тело человека – проводник) и т.д. В других случаях для уменьшения потерь на тепло в электрических машинах и трансформаторах увеличивают сопротивление токам Фуко, делая их сердечники не сплошными, а из изолированных друг от друга тонких пластин.

В цепях с переменным электрическим током электросопротивление проводников возрастает с увеличением частоты тока. Это объясняется тем, что распределение плотности тока по сечению проводника становится неоднородным с учетом токов Фуко: плотность тока возрастает у поверхности (так называемый скин – эффект). Это же позволяет делать проводники пустотелами (трубчатыми). На скин – эффекте основаны методики высокочастотной закалки поверхности деталей.

Сила переменного тока оказывается в один и тот же момент времени неодинаковой в разных участках проводника. Это обусловлено конечной скоростью распространения вдоль проводника меняющегося электромагнитного поля. Однако, если учесть малую скорость движения носителей зарядов по сравнению со скоростью распространения поля, то токи можно считать квазистационарнымитакже как и возбуждаемые ими магнитные поля.

Переменные токи получают с помощью генераторов. При вращении контура в однородном магнитном поле с угловой скоростью через площадь, ограниченную контуром, периодически изменяется магнитный поток (см. 3.67).

,

где Ф0- максимальное значение потока через площадьSконтура.

Электродвижущая сила, возникающая при этом (см.3.70), будет изменяться по синусоидальному закону. ε0=ωФ0-амплитуда ЭДС. Если цепь замкнута, то в ней потечет переменный ток:

.

Вообще любой проводник помимо омического сопротивления Rобладает индуктивностьюLи емкостью С. Они оказывают току дополнительное сопротивление в виду появления ЭДС самоиндукции (см.3.73) и инертности перезарядки емкости. Тогда амплитудное значение силы переменного тока:

(3.90)

Величина имеет характер полного сопротивления (импеданс). Она зависит от значенийR,L,Cи частоты. При, удовлетворяющем условию:

,

полное сопротивление имеет минимальное значение равное R, а амплитуда силы переменного тока достигает максимального значения:

Частота - называется резонансной.RL=Lи- называют индуктивным и емкостным сопротивлениями в цепи переменного тока.

Переменный электрический токимеет большое практическое применение. Его можно передавать с малыми потерями на большие расстояния и с помощью трансформаторов в широких пределах изменять его силу и напряжение.

Чтобы характеризовать действиепеременного тока в сравнении его с постоянным вводится понятиедействующих значений силы тока и напряжения. Действующим значением силы тока называют величинуI, связанную с амплитудойI0следующим образом:

аналогично и напряжение . Именно они определяют мощность переменного тока. Можно также дать и другое определениеIД: действующее значение силы переменного тока равно такой силе постоянного тока, который выделяет в цепи то же количество теплоты, что и переменный ток.